Glas: Das wesentliche Nanotech-Material | Das "Glaszeitalter" | Innovation | Corning.com

We use cookies to ensure the best experience on our website.
View Cookie Policy
_self
Accept Cookie Policy
Change My Settings
ESSENTIAL COOKIES
Required for the site to function.
PREFERENCE AND ANALYTICS COOKIES
Augment your site experience.
SOCIAL AND MARKETING COOKIES
Lets Corning work with partners to enable social features and marketing messages.
ALWAYS ON
ON
OFF

Diese Seite wird am besten mithilfe der neuesten Version von Google Chrome oder Mozilla Firefox angezeigt.

Close[x]
Workers in protective suits clamp, pour crucible of molten glass

Science of Glass

Science of Glass

Glas: Das wesentliche Nanotech-Material

Glas: Das wesentliche Nanotech-Material

Lange bevor der Physiker Richard Feynman das Zeitalter der Nanotechnologie mit seiner Behauptung im Jahre 1959 einleitete, dass unten eine Menge Platz sei, hatten Menschen Glas bereits auf der Nanoebene manipuliert – oftmals unbewusst.

Tausende Jahre lang haben Künstler aufgrund seiner Formbarkeit, wie es sich anfühlt und wie es mit Licht interagiert, mit Glas gearbeitet, während Handwerker Glas für praktische Anwendungen genutzt haben, da Glas stabil, undurchdringbar und transparent ist. Im vergangenen Jahrhundert haben Wissenschaftler im Hinblick auf die Eigenschaften und Herstellung von Glas außergewöhnliche Fortschritte gemacht, die zu innovativen Anwendungen in vielfältigen Bereichen geführt haben, wie z.B. der Architektur, dem Verkehr, der Elektronik, Kommunikation und Medizin.

Wie kann ein Werkstoff so viel leisten?

Eigentlich ist Glas ein ziemlich simpler Werkstoff. Der Hauptbaustein ist Quarz in Form von Sand. Quarz interagiert auf vielfältige Weise mit seinen Freunden im Periodensystem. Schaut man sich Forschungsarbeiten zum Thema Glas an, so sieht man, dass Wissenschaftler Quarz mehr als 50 verschiedene Elemente hinzugefügt haben, um Glaszusammensetzungen zu schaffen, die einzigartige Merkmale aufweisen.

Das Verfahren der Glaszusammensetzung befindet sich aber erst am Anfang. Wissenschaftler nutzen verschiedene Techniken, wie Irradiation, Oberflächenmodifizierung und präzise Temperaturkontrollen, um Spezialgläser mit unterschiedlichen Farben, Formfaktoren, Stärken, Flexibilitätsstufen und Lichthandhabungsmöglichkeiten zu entwickeln.

Durch Verfeinerung der Glasrezeptur und -herstellung können Wissenschaftler fast unbegrenzte neue Möglichkeiten schaffen. Diese beeindruckende Vielseitigkeit von Glas hat den Wissenschaftler David Pye von der Alfred University dazu bewogen, Glas als wesentliches Nanotech-Material zu beschreiben.