About - The Glass Age

We use cookies to ensure the best experience on our website.
View Cookie Policy
_self
Accept Cookie Policy
Change My Settings
ESSENTIAL COOKIES
Required for the site to function.
PREFERENCE AND ANALYTICS COOKIES
Augment your site experience.
SOCIAL AND MARKETING COOKIES
Lets Corning work with partners to enable social features and marketing messages.
ALWAYS ON
ON
OFF

Esta página possui melhor visualização com última versão do Google Chrome e do Mozilla Firefox.

Close[x]
About The Glass Age

About The Glass Age

About The Glass Age

Welcome to The Glass Age

Welcome to The Glass Age

Where one material can change the world.

Throughout history, materials have transformed society and culture. There was the Stone Age, the Bronze Age, and the Iron Age. This is the Glass Age. Where information moves at the speed of light. Where devices are as sophisticated as they are beautiful. Where everyday surfaces provide extraordinary benefits. Engineers, architects, artists, scientists, and more are using glass to achieve the impossible. Where will the Glass Age take you?

 

Learn More

THE GLASS AGE, FEATURING ADAM SAVAGE & JAMIE HYNEMAN

Amazing footage captured as Adam Savage and Jamie Hyneman demonstrate the mind-bending capabilities of today’s advanced glasses.

THE GLASS AGE, PART 1: FLEXIBLE, BENDABLE GLASS

Be amazed as Adam Savage and Jamie Hyneman introduce us to a whole new way of thinking about glass. Learn the history of glass innovation and watch incredible demonstrations of bendable optical fiber and thin, ultra-flexible glass.

THE GLASS AGE, PART 2: STRONG, DURABLE GLASS

Ever crack your cell phone screen? How about your car windshield? Adam Savage and Jamie Hyneman explain why those days may soon be behind us. Watch as they conduct mind-bending demonstrations of strong, durable glass.

GLASS: THE QUINTESSENTIAL NANOTECH MATERIAL

Long before physicist Richard Feynman launched the nanotechnology era with his 1959 assertion, “There’s plenty of room at the bottom,” people were manipulating glass at the nano level – often without realizing it.

For thousands of years, artists have worked with glass because of how it forms, feels, and handles light, while craftsmen have used glass for practical applications because of its stability, impermeability, and transparency. In the last century, scientists have made extraordinary advances in the characterization and fabrication of glass, leading to innovative applications in diverse fields such as architecture, transportation, electronics, communications, and medicine.

How can one material do so much?

At its core, glass is quite simple. The primary building block of glass is silica in the form of sand. But silica is an extremely gracious collaborator with its friends on the Periodic Table. In fact, an overview of glass research reveals that scientists have added more than 50 different elements to silica to create glass compositions with unique attributes.

But composition is just the beginning. Scientists also use a broad range of techniques such as irradiation, surface modification, and precise temperature control to develop specialized glasses with different colors, form factors, strengths, degrees of flexibility, and light-handling abilities.

By fine-tuning the formulation and fabrication of glass, scientists can unleash a nearly limitless stream of new capabilities. This tremendous versatility has prompted scientist David Pye of Alfred University to describe glass as “the quintessential nanotech material.”