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Abstract: 

 
This paper will discuss how mechanical and optical analysis software can be used together 
to optimize an opto-mechanical structure subjected to vibrational loading.  Mechanical 
analysis software output is post processed into Zernike polynomial coefficients and rigid 
body motions for analysis with optical modeling software.  Structural modifications can then 
be implemented to improve optical performance. 
 
A Cassegrain telescope, which can be utilized for laser radar applications, will be used to 
demonstrate this optimization.  Two FEA solution methods are compared.  Based on the 
deformation results of the FEA, Zernike polynomials and rigid body motions are generated 
and applied to the optical surfaces in CODE V®.  The effect of these deformations on 
wavefront can then be computed and compared to a required performance.   
 
 
 

1.  INTRODUCTION 
 
The manufacturing and testing of prototypes to verify designs is usually expensive and not 
practical from a scheduling standpoint.  Having the ability to analyze an opto-mechanical 
structure and predict the change in wavefront caused by vibrational loading allows 
optimization of the structure without the costly production of prototypes. 
 
In this example, a Cassegrain telescope (Figures 1 & 2) subjected to a random vibration in 
a single direction will be analyzed.  The Cassegrain telescope consists of three parts; the 
primary mirror, the secondary mirror and the mechanical structure connecting the two 
mirrors which is called the spider.  The random vibration is specified by a given PSD 
(Power Spectral Density) function.  Two different methods will be used to analyze the 
secondary mirror of the telescope, one static and one dynamic, and the results from the two 
analyses will be compared.  Both methods will utilize NX Nastran to perform a Finite 
Element Analysis on the telescope.  The surface deformations from the FEA will then be 
converted to Zernike coefficients using SIGFIT, a commercially available software package.  
The Zernike coefficients can then be applied to the optical surfaces in CODE V® to 
evaluate the affect of the disturbance on wavefront. 
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2.  THE FINITE ELEMENT MODEL (Figures 3 & 4) 
 
The finite element model is made up of a combination of parabolic tetrahedron elements 
and brick elements.  Each mirror surface is covered with a layer of 2D elements (orange) 
primarily for nodal bookkeeping.  The bolted interfaces were approximated with 2X bolt 
diameter connectivity.  The structure is restrained at three points on the backside of the 
primary mirror which are connected by rigid elements to a single node.  For the static 
analysis this node is fixed in all six degrees of freedom.  For the dynamic analysis this node 
represents the vibration source and is fixed in all degrees of freedom except one oriented in 
the radial direction (X).   

Figure 2:  Cross-section 
view of Cassegrain 
Telescope showing 

optical ray trace 

Figure 1:  Isometric 
view of Cassegrain 

Telescope 
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3.  STATIC ANALYSIS 
 
In order to solve a random vibration problem using static analysis the equivalent G-load 
response must be calculated.  This requires several assumptions: a single degree of 
freedom system, a random acceleration whose spectrum is flat in the area of resonance 
and lightly damped. 
 
With these assumptions the following equation will be used to determine the equivalent 
static G-load [1]. 

 
 
 
 
 
 

     
PSD = G2/Hz input at resonance frequency 

f = resonance frequency 
Q = transmissibility 

 
 

G
π
2

PSDn⋅ fn⋅ Q⋅:=G
π
2

PSDn⋅ fn⋅ Q⋅:=
 

Figure 3 Figure 4 
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Figure 5 
MODE 1 
468 Hz 

 

A FEA model was used to determine the first three resonant frequencies.  
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Figure 6 
MODE 2 
469 Hz 
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These three modes have very distinct mode shapes and are separated by less than 10 Hz.  
For a worst case example, mode 1 is used with the X-direction forcing function because 
mode 1 is predominately X displacement.   
 
Using the mode 1 resonance frequency value (468 Hz) and the given PSD function (Figure 
8) it is determined that the PSD value is .0025 G2/Hz.   
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Figure 8 
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The transmissibility (Q) of a lightly damped “beam-type” structure is approximated by 
substituting the resonant frequency into the following expression [1]: 
 
 

Q = 2(ωn)
1/2 = 43.27 
 

 
Now the equation for the equivalent G-load can be evaluated using the values for PSD, 
resonant frequency, and transmissibility resulting in a value of 8.9 G’s. 
 
This G-load was then applied to a static FEA with the load applied in the X-direction.  
Figure 9 shows the results of that analysis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9 
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Node Freq RE—Tx RE—Tv RE—Tz RE—Rx RE—Rv d—R0C d—C0C S—RNS R—RNS
1 467.66 99.296 56.275 43.004 56.574 99.302 99.959 99.959 69.096 23.963
2 466.79 0.700 42.969 55.627 42.677 0.696 0.000 0.000 10.737 75.306
3 475.50 0.002 0.756 1.369 0.749 0.002 0.041 0.041 0.164 0.711

Using the nodal displacement data from the surfaces, SIGFIT performs a fitting analysis to 
represent the shape of the surface with Zernike coefficients and rigid body motions.  The 
Zernikes generated for the secondary mirror are shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

These Zernikes will be compared to the random analysis results to evaluate the validity of 
the static analysis assumptions. 
 
 

4.  RANDOM ANALYSIS  
 
As in the static analysis, this example will only examine the X-direction.  The first step to 
the random analysis is to generate mode shapes.  This modal analysis is similar to the one 
performed for the static analysis with slightly modified boundary conditions.  A large mass 
is added to the vibration source node.   To allow vibration in the X-direction, this node is 
unconstrained in X.  The results of the modal analysis are the same as the previous static 
analysis results with a rigid body mode included. 
   
Using the modal shape data for the secondary mirror surface, the PSD table (Figure 8), and 
assuming a damping value of 1 percent, a random analysis is performed. The output from 
this first random analysis is a modal contribution table. 
 
The modal contributions for the secondary mirror are shown in table 2.  They include 
percentage contribution for rigid body motion (RB), for Power (d-RoC), and for surface 
RMS (S-RMS) with the given PSD.  Nearly 90% of the surface RMS comes from the first 
mode justifying the decision to excite in the X-direction to get worst case. 
 
 
 
 
 
 

 

 
Table 1-Static Analysis Zernike Coefficients 

 
Table 2-Modal Contribution Table 
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Scaling Factor =
surface RM

surface RM

1 random

3mode 1 fitting

 
Table 3-Random Analysis Mode 1 Zernike Coefficients 

Because both the rigid body motion and surface RMS are dominated by the contribution 
from Mode 2, A fitting analysis is performed on this mode to represent the shape of the 
secondary mirror surface deformation.  This is similar to the analysis performed for the 
static solution and results in the following Zernike coefficients (Table 3).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This analysis provides the shape function of the deformed surface with rigid body motions 
removed.   It should be noted that these are normalized values.  A surface RMS, based on 
these normalized values, is calculated and will be used to properly scale these Zernikes. 
  
A second random analysis is performed using only mode 1 data to determine the actual 
surface RMS contribution from mode 1.  This value is for a one sigma condition (values will 
not be exceeded 68% of the time). 
 
These two surface RMS values can be used to calculate a scaling factor.   
 
 
 
 
 
 
The random analysis mode 1 rigid body motions and Zernike coefficients are scaled with 
this scaling factor to provide actual surface deformations due to mode 1 when the model is 
excited in the X-direction for one sigma values.   
 
The wavefront aberrations created by the surface irregularities and rigid body motions can 
then be evaluated against specification.  At this point a decision can be made whether the 
structure is adequate or requires improvement. 
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5.  STATIC AND DYNAMIC SOLUTIONS COMPARISON 
 

Because the random analysis deformations were so dominated by contributions from mode 
1, it was expected that there would be some correlation between the shape functions 
generated by the two different analyses.  The magnitude of the surface RMS and rigid body 
motions were expected to vary since the assumptions made to calculate the equivalent 
static g-load “loosely” fit the criteria for the assumptions required.  However, a comparison 
of the shape functions generated by the two analysis methods shows very little correlation 
(see table 5).  Further investigation is required to understand the differences in the two 
analyses. 
Therefore, the more rigorous random analysis results will used to validate optical 
performance. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 5-Zernike Coefficient Comparison 
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6.  CLOSING THE LOOP 
 
Improvements require mass removal or structural stiffening.  A strain energy analysis will 
illustrate regions of the structure requiring mass removal or an increase in stiffness.  After 
modifying the structure the analysis is repeated to evaluate the improvements.  
 
Figure 10 is a strain energy analysis of mode 1.   
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 
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7.  CONCLUSION 
 

It has been shown how mechanical and optical analysis software can be used together to 
optimize an opto-mechanical structure subjected to vibrational loading.  Mechanical 
analysis software output was post processed into Zernike polynomial coefficients and rigid 
body motions and analyzed with optical modeling software.  Based on the results of these 
analyses, structural improvements can then be implemented where required. 
 
For this example the static analysis results did not match the more rigorous random 
analysis results. A possible explanation is that the model’s behavior did not match the 
assumptions required for the static analysis application.  
 
The example analysis presented in this paper is intended to demonstrate the ability to 
design an opto-mechanical structure and optimize its performance without the cost and 
time associated with prototypes. 
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