ULE® Corning Code 7972
Ultra Low Expansion Glass
Advanced Optics and Materials

ULE® Corning Code 7972 Ultra Low Expansion Glass is a titania silicate glass with unique characteristics that have made it the material of choice in applications ranging from machine tool reference blocks to solid and lightweight mirror blanks for large astronomical telescopes and space satellite applications. It is formed as 1.5-meter boules from which virtually any size or shape product can be made.

Near Zero Thermal Expansion is the key attribute for which system designers specify Corning ULE®. This material offers superior dimensional stability:

- Coefficient of thermal expansion (CTE) is nominally zero at room temperature
- Expansivity can be adjusted to provide zero CTE at other temperatures when needed for specific applications
- High homogeneity of CTE within boules enables efficient material utilization
- CTE is nondestructively measured on all ULE® boules, enabling precision engineering and analysis of the thermal response of products in the end use environment

Fabrication Flexibility is the key to product design freedom. Corning utilizes several key manufacturing processes which enable the production of a variety of products:

- Monolithic solids from a few centimeters to over 8 meters in diameter
- Lightweight fusion bonded structures offering up to 80% weight reduction over the same sized solid
- Ultralightweight frit bonded structures with up to 95% weight reduction are possible using a proprietary glass ceramic frit designed to closely match the thermal expansion of ULE® glass.
CTE Variation and Inclusion Quality Grades

Mean Linear Coefficient of Thermal Expansion (CTE)
The guaranteed maximum limits for the mean linear CTE are as follows:
The mean linear CTE shall be $0 \pm 30 \text{ ppb/}^\circ\text{C}$ from 5°C to 35°C with a 95% confidence level.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Radial Range</th>
<th>Axial Range</th>
<th>Birefringence (nm/cm)</th>
<th>Inclusion Quality</th>
<th>Diameter < 20”</th>
<th>Diameter 20” to 56”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Grade</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirror Grade</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Grade</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tooling Grade</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>Contact Corning for availability</td>
</tr>
</tbody>
</table>

- Inclusion max mean diameter:
- Inclusions per cubic inch:
- Avg. no. of inclusions per cu. in.:

Special grades and sizes available on request

- CTE verification is performed using a non-destructive ultrasonic method.
- Excellent long term dimensional stability is exhibited at room temperature. No residual figure change is observed when taking an optic from 350°C to water quench.
- There has been no measurable delayed elastic effect. This is an important consideration when large strain is present during fabrication or when environmental loading is present, such as during gravity release or dynamic control of active optics.
- No measurable hysteresis results from thermal cycling.

![Graphs showing CTE and Thermal Expansion](image-url)
Thermal Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Linear Coefficient of Thermal Expansion</td>
<td>$0 \pm 30 \times 10^{-9}/K$ [0 ± 30 ppb/°C]</td>
</tr>
<tr>
<td>Mean Specific Heat (C_p)</td>
<td>767 J/(kg · °C) [0.183 cal/(g · °C)]</td>
</tr>
<tr>
<td>Thermal Conductivity (K)</td>
<td>1.31 W/(m · °C) [1.13 kcal/(m · h · °C)]</td>
</tr>
<tr>
<td>Strain Point</td>
<td>890°C [1634°F]</td>
</tr>
<tr>
<td>Thermal Diffusivity (D)</td>
<td>0.0079 cm²/s</td>
</tr>
<tr>
<td>Annealing Point</td>
<td>1000°C [1832°F]</td>
</tr>
<tr>
<td>D.C. Volume Resistivity, 200°C 100Hz (R)</td>
<td>$10^{11.6}$ ohm · cm</td>
</tr>
<tr>
<td>Softening Point (estimated)</td>
<td>1490°C [2714°F]</td>
</tr>
</tbody>
</table>

Mechanical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson's Ratio (ν)</td>
<td>0.17</td>
</tr>
<tr>
<td>Specific Stiffness (E/p)</td>
<td>3.12 x 10⁶ m [1.23 x 10⁸ in]</td>
</tr>
<tr>
<td>Ultimate Tensile Stress (MOR)</td>
<td>49.8 MPa [7220 psi]</td>
</tr>
<tr>
<td>Shear Modulus (G)</td>
<td>29.0 GPa [4.20 x 10⁶ psi]</td>
</tr>
<tr>
<td>Knoop Hardness, 200g load</td>
<td>460 kg/mm²</td>
</tr>
<tr>
<td>Bulk Modulus (K)</td>
<td>34.1 GPa [4.95 x 10⁶ psi]</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>2.21 g/cm³ [0.079 lb/in³]</td>
</tr>
<tr>
<td>Elastic Modulus (E)</td>
<td>67.6 GPa [9.80 x 10⁶ psi]</td>
</tr>
</tbody>
</table>

Optical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress Optical Coefficient</td>
<td>4.15 (nm/cm)/(kg/cm³) [0.292 (nm/cm)/psi]</td>
</tr>
<tr>
<td>Abbé Number (v_d)</td>
<td>53.1</td>
</tr>
<tr>
<td>Refractive index (nominal CTE Material)</td>
<td></td>
</tr>
<tr>
<td>n_F (486 nm)</td>
<td>1.4892</td>
</tr>
<tr>
<td>n_D (589 nm)</td>
<td>1.4828</td>
</tr>
<tr>
<td>n_C (656 nm)</td>
<td>1.4801</td>
</tr>
<tr>
<td>dn/dt</td>
<td></td>
</tr>
<tr>
<td>20-40°C</td>
<td>10.68 x 10⁻⁶/°C</td>
</tr>
<tr>
<td>40-60°C</td>
<td>11.24 x 10⁻⁶/°C</td>
</tr>
</tbody>
</table>

Chemical Durability

- Excellent resistance to weathering
- Exhibits virtually no surface clouding or electrical surface leakage when subjected to attack by water, sulfur dioxide, and other atmospheric gases.
- High resistance to attack by nearly all chemical agents.

Solution at 95°C

<table>
<thead>
<tr>
<th>Solution</th>
<th>Test Duration</th>
<th>Weight Loss mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% HCl</td>
<td>24h</td>
<td>< 0.01</td>
</tr>
<tr>
<td>5% NaOH</td>
<td>6h</td>
<td>0.9</td>
</tr>
<tr>
<td>0.02N Na₂CO₃</td>
<td>6h</td>
<td>0.02</td>
</tr>
<tr>
<td>5% H₂SO₄</td>
<td>24h</td>
<td>< 0.01</td>
</tr>
<tr>
<td>H₂O</td>
<td>24h</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Unless otherwise stated, all values @ 25°C
Worldwide Accessibility

We are here to help you specify the best product for your application.
For further information, please contact:

North America Sales Office
Corning Incorporated
Advanced Optics
334 County Route 16
Canton, NY 13617
t: 315.379.3600
f: 315.379.3317
e-mail: hpfs@corning.com

Europe Sales Office
Corning GmbH
Corning International
Abraham-Lincoln Strasse 30
Wiesbaden, Germany
f: 49.611.7366.100
e-mail: Clgermany@corning.com

Australia Sales Office
Corning Optical Communications Pty Ltd.
74-84 Main Road
Clayton, Victoria, Australia 3168
t: 61.3.9538.2300
f: 61.3.9538.2316

World Headquarters
Corning Incorporated
One Riverfront Plaza
Corning, NY 14831
t: 607.974.9000

Asia Sales Offices
Corning International K.K.
Akasaka Intecity, 7th Floor
1-11-44, Akasaka, Minato-ku
Tokyo 107-0052 Japan
t: 81.3.3586.1052
f: 81.3.3587.0906

Corning International
1 Kim Seng Promenade
Great World City
#09-11/12 West Tower
Singapore 237994
t: 65.6572.9740
f: 65.6735.2913

Corning China (Shanghai)
Regional Headquarters
No. 358 (Gate #4) Lu Qiao Road
Jinqiao Export Processing Zone
Pudong, Shanghai 201206, China
t: 86.21.2215.2888
f: 86.21.6215.2988

Corning Korea Company Ltd.
6th Floor, Gangham Finance Center
152, Teheran-ro
Gangnam-Gu
Seoul, Korea 135-984
t: 82.2.796.9500
f: 82.2.796.9300

Corning International Taiwan Co. Ltd.
8F, No. 8, Section 3 Minsheng East Road
Zhongshan Dist., Taipei, Taiwan 10480
t: 886.2.2716.0338
f: 886.2.2716.0339

The information contained herein is based upon data considered to be accurate. However, no warranty is expressed or implied regarding the performance of this product. The only applicable warranties are those specified in a contract or purchase agreement.

Corning Advanced Optics
334 County Route 16
Canton, New York
t: 315.379.3600

Corning Inc.
www.corning.com

ULE® is a registered trademark of Corning Incorporated

© 2016 Corning Incorporated. All Rights Reserved.