Corning® SMF-28e+® LL Optical Fiber

Product Information

CORNING

How to Order

Contact your sales representative, or call the Optical Fiber Customer

Service Department:

Email: cofic@corning.com

when ordering.

Please specify the fiber type, attenuation, and quantity

Ph: 1-607-248-2000 (U.S. and Canada) +44-1244-525-320 (Europe)

Corning® SMF-28e+® LL optical fiber is an ITU-T Recommendation G.652.D compliant optical fiber which builds on Corning's low-loss fiber technology to enable extended networking distances for long-haul, metro, and access applications. SMF-28e+ LL fiber offers industry-leading specifications for attenuation and polarization mode dispersion values; these values provide a solid foundation for new network deployments as well as upgrades to existing networks.

Optical Specifications

Maximum Attenuation

(nm) (dB/km)
1310 ≤ 0.32
1383** ≤ 0.32
1490 ≤ 0.21
1550 ≤ 0.18
1625 ≤ 0.20

^{*} Alternate attenuation offerings available upon

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel	Number	Wavelength	Induced
Diameter	of	(nm)	Attenuation*
(mm)	Turns		(dB)
32	1	1550	≤ 0.03
50	100	1310	≤ 0.03
50	100	1550	≤ 0.03
60	100	1625	≤ 0.03

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{s})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode-Field Diameter

Wavelength	MFD
(nm)	(µm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm•km)]
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0) : $\leq 0.092 \text{ ps/(nm}^2 \cdot \text{km)}$

Polarization Mode Dispersion (PMD)

	Value (ps/√km)
PMD Link Design Value	≤ 0.04*
Maximum Individual Fiber PMD	≤ 0.1

*Complies with IEC 60794-3: 2001, Section 5.5, Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMDo). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**} Attenuation values at this wavelength represent post-hydrogen aging performance.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Coating Diameter	$242 \pm 5 \mu M$
Coating-Cladding Concentricity	< 12 µm

Environmental Specifications

		Induced Attenuation	
Environmental Test	Test Condition	1310 nm, 1550 nm, and 1625 nm	
		(dB/km)	
Temperature Dependence	-60°C to +85°C*	≤ 0.05	
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05	
Water Immersion	23°C ± 2°C	≤ 0.05	
Heat Aging	85°C ± 2°C	≤ 0.05	
Damp Heat	85°C at 85% RH	≤ 0.05	

^{*}Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress \geq 100 kpsi (0.69 GPa).* *Higher proof test levels available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

·	
Core Diameter	8.2 µm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (N _{eff})	1310 nm: 1.4676 1550 nm: 1.4682
Fatigue Resistance Parameter (N _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3N) Wet, 14-day room temperature: 0.6 lbs. (3N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

