Corning ${ }^{\circledR}$ SMF-28 ${ }^{\circledR}$ ULL Optical Fiber Product Information

How to Order

Contact your sales
representative, or call the Optical Fiber Customer Service Department
Ph: 1-607-248-2000 (U.S. and Canada)
+44-1244-525-320 (Europe)
Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity when ordering.

Corning ${ }^{\oplus}$ SMF- 28^{\oplus} ULL optical fiber has the lowest loss of any terrestrial-grade, single-mode fiber with a maximum attenuation of $0.17 \mathrm{~dB} / \mathrm{km}$ at 1550 nm . SMF- 28 ULL fiber has been deployed around the world in some of the most challenging network applications, where ultra-low attenuation can be leveraged to extend network span lengths, skip amplification sites, upgrade to faster bit rates, add network components for improved flexibility, or lengthen the distances between regenerators. As a result, long-haul and regional networks are scalable for the higher capacities required to meet the everincreasing global demand for bandwidth without the need to sacrifice backwards compatibility with an existing ITU-T Recommendation G. 652 installed base of fibers. SMF-28 ULL fiber complies with ITU-T Recommendation G.652.B and G.654.C.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value* $(\mathrm{dB} / \mathrm{km})$
1310	≤ 0.31
1550	≤ 0.17
1625	≤ 0.20

*Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range (nm)	Ref. λ (nm)	Max. α Difference $(\mathrm{dB} / \mathrm{km})$
$1285-1330$	1310	0.03
$1525-1575$	1550	0.02
$1550-1625$	1550	0.03

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α.
$\left.\begin{array}{l}\begin{array}{c}\text { Macrobend Loss } \\ \text { Mandrel } \\ \text { Diameter } \\ (\mathrm{mm})\end{array} \\ \begin{array}{cccc}\text { Number } \\ \text { of } \\ \text { Turns }\end{array}\end{array} \begin{array}{c}\text { Wavelength } \\ (\mathrm{nm})\end{array} \begin{array}{c}\text { Induced } \\ \text { Attenuation* } \\ (\mathrm{dB})\end{array}\right]$

Cable Cutoff Wavelength $\left(\lambda_{\text {cc }}\right)$
$\lambda_{\text {cc }} \leq 1260 \mathrm{~nm}$

Mode-Field Diameter Wavelength (nm)	MFD $(\mu \mathrm{m})$
1310	9.2 ± 0.5
1550	10.5 ± 0.5

Dispersion Wavelength (nm)	Dispersion Value $[\mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})]$
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength $\left(\lambda_{0}\right)$: $1304 \mathrm{~nm} \leq \lambda_{0} \leq 1324 \mathrm{~nm}$ Zero Dispersion Slope (S_{0}): $\leq 0.092 \mathrm{ps} /\left(\mathrm{nm}^{2} \cdot \mathrm{~km}\right)$

Polarization Mode Dispersion (PMD)

	Value $(\mathrm{ps} / \sqrt{ } \mathrm{km})$
PMD Link Design Value	$\leq 0.04^{*}$
Maximum Individual Fiber PMD	≤ 0.1

*Complies with IEC 60794-3: 2001, Section 5.5, Method 1, ($m=20,0=0.01 \%$), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as $P M D_{\mathrm{Q}}$). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Dimensional Specifications

Glass Geometry			Coating Geometry			
Fiber Curl	$\geq 4.0 \mathrm{~m}$ radius of curvature		Coating Diameter	$242 \pm 5 \mu \mathrm{~m}$		
Cladding Diameter	$125.0 \pm 0.7 \mu \mathrm{~m}$		Coating-Cladding Concentricity	$<12 \mu \mathrm{~m}$		
Core-Clad Concentricity	$\leq 0.5 \mu \mathrm{~m}$					
Cladding Non-Circularity	$\leq 0.7 \%$					

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation $1310 \mathrm{~nm}, 1550 \mathrm{~nm} \& 1625 \mathrm{~nm}$ $(\mathrm{~dB} / \mathrm{km})$
Temperature Dependence	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$	≤ 0.05
Temperature Humidity Cycling	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ up to $98 \% \mathrm{RH}$	≤ 0.05
Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Damp Heat	$85^{\circ} \mathrm{C}$ at $85 \% \mathrm{RH}$	≤ 0.05
${ }^{*}$ Reference temperature $=+23^{\circ} \mathrm{C}$		
Operating Temperature Range: $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Mechanical Specifications		

Proof Test
The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}(0.69 \mathrm{GPa})$.*
*Higher proof test levels available.
Length
Fiber lengths available up to $25.2 \mathrm{~km} /$ spool.

Performance Characterization Specification

Characterized parameters are typical values.

Core Diameter	$8.2 \mu \mathrm{~m}$
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction ($\mathrm{N}_{\text {eff }}$)	$1310 \mathrm{~nm}: 1.4606$ $1550 \mathrm{~nm}: 1.4620$
Fatigue Resistance Parameter (N_{d})	20
Coating Strip Force	Dry: $0.6 \mathrm{lbs} .(3 \mathrm{~N})$ Wet, $14-\mathrm{day} \mathrm{room} \mathrm{temperature:}$ $0.6 \mathrm{lbs} .(3 \mathrm{~N})$
Rayleigh Backscatter Coefficient (for $1 \mathrm{~ns} \mathrm{Pulse} \mathrm{Width)}$	$1310 \mathrm{~nm}:-77 \mathrm{~dB}$ $1550 \mathrm{~nm}:-82 \mathrm{~dB}$

