Corning® SMF-28® Contour Fit Optical Fiber

Product Information

CORNING

ColorPro® Identification

SMF-28® Contour Fit fiber is

also available in colored and ringmarked variants, enabled

by ColorPro® identification

technology. Corning fibers

with ColorPro® identification technology deliver better efficiency in cable manufacturing,

simplify inventory management,

and leverage an enhanced fiber

Ph: 1-607-248-2000 (U.S./Can.)

Email: cofic@corning.com

attenuation, and quantity when ordering.

Please specify the fiber type,

+44-1244-525-320 (Europe)

product offering.

Contact your sales

representative, or call the Optical Fiber Customer

Service Department:

How to Order

Technology

SMF-28® Contour Fit fiber combines excellent bend resilience at small bends with a 190 micron outer diameter, making it ideal for high density optical cable and connectivity solutions. With low attenuation options available and a 9.2 micron mode field diameter compatible with existing networks, it is suitable for broad applications and a wide range of distances. SMF-28 Contour Fit fiber meets Recommendation ITU-T G.657.A1 and is compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Attenuation Options

Wavelength (nm)	Maximum Value (dB/km)
1310	≤ 0.32 - 0.34
1383*	≤ 0.32 - 0.34
1490	≤ 0.21 - 0.22
1550	≤ 0.18 - 0.20
1625	≤ 0.20 - 0.22

^{*} Attenuation values at this wavelength represent post-hydrogen aging performance.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 — 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
7.5	1	1550	≤ 0.5
7.5	1	1625	≤ 1.0
10	1	1550	≤ 0.1
10	1	1625	≤ 0.2
15	10	1550	≤ 0.25
15	10	1625	≤ 1.0

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode Field Diameter

Wavelength	Mode Field Diameter
(nm)	(μm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm•km)]
1550	≤ 18.6
1625	≤ 23.7

Zero Dispersion Wavelength (λ_0): 1300 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): \leq 0.092 ps/(nm²•km)

Polarization Mode Dispersion (PMD)

PMD Link Design Value≤ 0.04*Maximum Individual Fiber PMD≤ 0.1

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_Q). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Issued: January 2025 Supersedes: May 2024

^{*}Complies with ITU-T G.650-2 Appendix IV, (m = 20, Q = 0.01%), August 2015.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Uncolored Coating Diameter	188 ± 5 μm
Coating-Cladding Concentricity	≤ 10 µm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (n _{eff})	1310 nm: 1.4673 1550 nm: 1.4680
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.5 lbs. (2 N) Wet, 14-day room temperature: 0.5 lbs. (2 N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

^{*}Reference temperature = +23°C