Non-CYP Drug Metabolism Pathways

Chris Patten, Ph.D. Corning Life Sciences

May 12, 2015

Importance of Non-CYP Pathways for Drug Clearance

Williams et al., DMD, 2004

Top 200 prescribed drugs in 2002

- Metabolism is predominant means of elimination
- CYP is major metabolic enzyme, followed by UGTs
- ~1/3 of drugs metabolized by non-CYP pathways
 - UGT
 - Esterase
 - Other phase 1 and phase 2 enzymes
- Current trend to design drugs with non-CYP metabolic pathways of elimination to avoid CYP DDI's

- Aldehyde oxidase
- Carboxylesterase
- UDP-glucuronidation

Aldehyde Oxidase

Aldehyde Oxidase Background

- Molybdo-flavoenzyme (MOFEs)
- Soluble, cytosolic enzyme
- Exists as a homo-dimer of two identical subunits, each ~150KD, each subunits contains the following:
 - 2Fe/2S centers
 - FAD
 - MoCo co-factor, which is near active site
- Oxidizes numerous drug molecules
 - Aromatic Aza-heterocycles
 - Aldehydes (aromatic)
 - Iminium ion intermediates
 - Reduction

Aromatic Aza-heterocyle Substrates

Some AO Substrates

- Aromatic aza-heterocycles required in scaffold for targeting kinase inhibitors
- Introduction of nitrogen in aromatic ring of heterocycle reduces CYP activity
- Becomes better substrate for AO
- Hydroxylation (nucleophilic attach) of carbon adjacent to nitrogen

Aldehyde and Iminium Ion Substates

CORNING | Life Sciences

Tissue Distribution, Species Differences, Genes, Patient Variability

- AO is most abundant in the liver, also abundant in adrenal tissue
- Widespread distribution in other tissues (immunohistochemical studies): Skin, intestine, kidney, and lung have lower abundance/activity
 - Clearance for AO drugs > hepatic blood flow, suggesting possible involvement of extra-hepatic metabolism
- Large species difference: Human, monkey, guinea pig have highest activity, rat is intermediate, and dog is very low (absent) in AO activity
 - Strain differences observed in mice and rats
- In humans, AO is represented by a single gene product (AOX1), no isoforms
 - Rats and mice have 4 functional genes, monkey (rhesus) has 3 genes
 - Monkey, guinea pig, rat, and mouse all express the human ortholog, AOX1, dog does not have AOX1
- AO shows high patient-to-patient variability in activity (>40-fold reported)
 - Several SNPs have been identified which could be contributing factor
 - Lower variability reported for protein levels (3- to 4-fold via LC/MS [Fu, DMD, 2013]): co-factor depletion, SNPs, and tissue damage during processing

Aldehyde Oxidase vs. CYP Drug Metabolism

- AO is present in cytosol (CYP is in microsome)
 - Systems to study AO: S9, cytosol, hepatocytes
- AO does not require a soluble co-factor, e.g. NADPH
- H₂O is source of oxygen for AO-dependent drug oxidation, vs. O₂ for CYP
- AO prefers electron deficient carbons (nucleophilic attack of electrophilic carbons), vs. CYP, which prefers electron rich carbons
 - Reducing the electron density of a carbon in order to avoid CYP metabolism, can result in nucleophilic attack by AO

Importance of AO in human drug metabolism

- AO is typically not present in the "standard" metabolic stability assay using liver microsome.
- Chemical strategy to reduce P450 metabolism leads to alternative metabolic clearance mechanism, such as AO.
- That the AO pathway has been overlooked leads to clinical failures; higher-than-predicted clearance or toxicological outcomes in human (Diamond, et al., 2010),

Proportion of AO substrates in current compound collection (Pryde, J. Med. Chem, 2010)

- Authors analyzed several drug data bases for potential substrates of AO.
- Analysis based on known structural requirements of AO substrates (e.g. aromatic heterocycles).
- Conclusions:
 - Few drugs have gone to market that are AO substrates.
 - Drugs in current development pipeline are at greater risk of being AO substrates.
 - GPCR and Kinase targeted subsets showed the highest risk of AO metabolism.

Drug Failures due to AO

- FK3453: Parkinson's disease
 - Favorable PK in rat and dog
 - Good metabolic stability in rat, dog, and human HLM
 - Predicted human in vivo clearance: 1.3 mL/min/kg
 - Observed in vivo clearance: 3,000 mL/min/kg
 - Drug withdrawn from phase 1 trials
 - Using selective AO and CYP inhibitors, AO was identified as predominant pathway
- Other failures
 - SGX523: Cancer drug
 - P38 Kinase inhibitor: arthritis
- Common Theme
 - Inappropriate preclinical species: rat, dog
 - Emphasis on HLM (i.e., CYPs)

In Vitro Systems for Studying Aldehyde Oxidase

- Hepatocytes, S9, and cytosol correlate well with one another
- In vitro scaled intrinsic clearance underestimates in vivo clearance.
- Assay time-course linearity can be an issue with tissue fractions, hepatocytes show better linearity.
- Stability of AO in hepatocytes and tissue fractions seen as possible cause for patient variability and under prediction of drug clearance
 - -Cryopreservation of hepatocytes has little effect on AO activity
 - -AO in S9 and cytosol is stable to freeze/thaw (in-house data)
- Microsomes can be contaminated by cytosolic AO (it is important to "wash" microsome fraction with an extra high speed spin.)

AO Activity in Human Liver Cytosol (HLC)

Aldehyde Oxidase in Human Liver Cytosol

Aldehyde Oxidase in Human Hepatocytes

- Phthalazine is probe substrate of AO
- Short assay linearity in cytosol and rAO, but not in hepatocytes
- Reported by other groups for phthalazine
- Substrate-dependent
- Also reported for benzylaldehyde oxidation (Kitamura, *Life*, 1999), in same paper Methotrexate showed long linear time course.
- Product inhibition possible explanation

In Vitro Systems to Assess AO Activity

- S9, Cytosol, Hepatocytes (Zientek, DMD, 2010; Hutzler, DMD, 2012)

- Hepatocytes (pooled), S9, and cytosol under predict Cl
 - ~11-fold under prediction for tissue fractions, ~3-fold for hepatocytes
- S9 and Cytosol correlate well with each other
- Zientek, et.al., proposed "calibration method" for predicting *in vivo* clearance
 - -Cl_{int} < Zaleplon: Low clearance
 - Zonipride: Moderate
 - -Cl_{int} > Carbazeran: High clearance
- Under prediction may be due in part to extra-hepatic metabolism

Aldehyde Oxidase Substrates and Inhibitors

- Drug substrates (Pryde, J. Med. Chem, 2010)
 - -Zaleplon
 - Carbazeran
 - Methotrexate
 - Zoniporide
- Commonly used probe substrates
 - Phthalazine
 - Vanillin
- Inhibitors
 - Raloxifene (Obach, DMD, 2004), TDI
 - Hydralazine (Strelevitz, DMD, 2012), TDI

Determining Fraction Metabolized in Human Hepatocytes with TDI Hydalazine (Strelevitz, DMD, 2012)

- Zaleplon metabolized by CYP and AO pathways
 - P450 metabolite desethylzaleplon
 - AO metabolite oxozaleplon
- Hydralazine at 25 to 50 μ M was selective for AO metabolite in hepatocytes
- Minor inhibition of CYPs (2D6 and 3A4) at 50 µM (tested in HLM)
- Hydalazine was non-cytotoxic to PHH at concentrations used in the study

Aldehyde Oxidase Decision Tree

Decision tree to guide decision-making during the screening of potential AO substrates.

- As Pharma designs drugs away from CYP metabolic pathways, the likelihood of introducing an AO pathway tends to increase.
- Current compound libraries in development show a greater risk of being AO substrates vs. older drugs (based on the growing number of compounds containing aza heterocycle structures, e.g., kinase and GPCR inhibitors).
- Current *in vitro* models hepatocytes and tissue fractions tend to under-predict *in vivo* clearance.
- No reports of significant AO related DDI to date, but the potential is there as more AO dependent drugs are put on the market (victim drugs).

Esterases

CORNING | Life Sciences

Carboxylesterases (CES): Major Non-CYP Metabolic Enzymes

- Human Carboxylesterases (CESs) are members of the serine hydrolase superfamily
- CESs are categorized as Phase I enzyme that can hydrolyze a variety of ester-containing drugs or pro-drugs (increase bioavailability)
 - Angiotesin-converting enzyme inhibitors (e.g., temocapril, cilazapri)
 - Narcotics (cocaine, heroin)
- In human, carboxylesterases identified for drug hydrolysis belong to the CES1 and CES2 family; CES3, 4A and 5A also in human tissue, but not involved in DM.
- CESs exist on luminal side of ER in microsomes, but also found in cytosol
- CES1
 - Major liver form, also in lung, very low in gut.
 - Monomer MW: 60KDa, exists as a trimer (MW: 180 KDa)
- CES2
 - Major intestinal form, lower in liver, also in kidney and brain
 - Exists as a monomer (MW: 60KDa)

Other Hydrolytic Enzymes Involved in Drug Metabolism

- BChE (Butyrylcholinesterase)
 - Liver (not active?), plasma (secreted from liver)
 - Rough ER
 - Cocaine, CPT-11, aspirin, heroin
- Paraoxonases (Lactonases)
 - PON1, PON2, PON3
 - Liver, plasma
 - Calcium dependent
 - Lovastatin, simvastatin, pilocarpine, prulfiloxacin, organophosphate pesticides
- AADAC (arylacetamide deacetylase)
 - Microsomal (luminal side)
 - Liver, intestine
 - Flutamide, rifampicin, phanacetin
- CMBL (carboxymethylenebutenolidase)
 - Cytosol
 - Liver, intestine
 - Olmesartan medoxomil, faropenem

CES1 Substrate Specificity (Hosokawa, Molecules, 2008)

Substrate	Alcohol Substituent	Acyl Substituent	Substrate
			Specficity
Cocaine (methyl ester)	CH₃OH	CH3 OH OH	CES1
Meperidine	CH ₃ CH ₂ OH	HO H ₃ C-N	CES1
Methylphenidate	CH₃OH		CES1
Temocapril	C ₂ H ₅ OH	HO HH H S H NH O N S COOH	CES1

- CES1 prefers substrates with small alcohol leaving group and large acyl group.
- CES2 prefers substrates with large alcohol leaving group and small acyl group.

CES2 Substrates (Hosokawa, Molecules, 2008)

Human Esterase Inhibitors and Probe Substrates

- Non-specific CES inhibitor
 - Bis(4-nitrophenyl) phosphate (BNPP)
- CES1 inhibitors
 - Clopidogrel
 - Nordihydroguaiaretic acid (NDGA)
 - **Digitonin** (Shimizu, DMD, 2014)
- CES2 inhibitors
 - Loperamide
 - Telmisartin (Shimizu, 2014)
- **AADAC:** Vinblastine potent inhibitor for AADAC and CES2, but not CES1 (Shimizu)

CES1 substrate

- Trandolapril
- CES2 substrates
 - Irrinotecan
 - Fluorescein Diacetate

Human CES1 Genes

- Three CES1 gene sequences have been identified in human liver (each has unique accession number in NCBI)
 - CES1a (CES1A1)
 - CES1b: Relative to 1a, 1b lacks Ala18 near N-terminus, CES1a\1b dominant form(s) in liver
 - CES1c: Lacks Ala18 near N-terminus; lacks Gln362 in the proposed active site, several aa near N-terminus are different.
- Recombinant human CES1b, CES1c, and CES2 (Corning[®] Supersomes[™] enzymes: baculovirus-infected High Five insect cells).

Recombinant CESs Show Consistent Characteristics as Human Tissues

Corning[®] Supersomes[™] CESs:

- CES1b is predominant form in liver for the hydrolysis 4-NPA (K_m matches HLM)
- CES1c is found in liver, higher K_m value due to one mutation in the active site
- CES2 is the predominant form in the intestine (K_m matches HIM)
- CES1b and CES2 activity was found to be similar to human liver microsomes and intestinal microsomes, respectively.

Fluorescein Diacetate is a Probe Substrate for CES2

- Activity for Corning[®] Supersomes[™] CES2 is about 50-fold higher vs. CES1b or 1c (k_{cat} values of CES2 is roughly 100-fold higher than CES1b or 1c based on estimated expression level).
- CES2 is present in both liver and intestine, while CES1 is liver specific FD hydrolysis in HLM is due to CES2.
- Loperamide, a known CES2-specific inhibitor, inhibits HLM, HIM, and CES2 with similar IC₅₀, while showing no inhibition towards CES1b/c.

Wang J., Williams ET, Bourgea J, Wong YN, and Patten CJ (2011). DMD 39:1329-1333.

1 50 µM FD was used as substrate
2 5 µM FD was used as substrate

CORNING | Life Sciences

Conclusions: Esterase Enzymes

- No reports of clinical DDI involving esterases
- Many potent inhibitors identified, so DDI potential exists
- Alcohol and grapefruit juice inhibit CES (kaempferol, quercetin, not bergamottin)
- Several reported SNPs that reduce activity and cause changes in drug exposure
- In vitro tools (e.g., recombinant enzymes, inhibitors) lacking for esterase enzymes other than CES (e.g., ADDAC, PON)

UDP-Gluronosyltransferase

Importance of UGTs for Drug Metabolism

for 1:10 drugs

 UGT2B7 is major UGT (metabolism of ~40% of drugs), followed by UGT1A1, UGT1A4, and UGT1A9 (combined they account for 47%)

Williams et al., DMD, 2004; Kaivosaari, 2010

UDP-Glucuronosyltransferases (UGTs)

- UGTs conjugate glucuronic acid to lipophilic substrates to more watersoluble metabolites, glucuronides, to facilitate excretion
- Glucuronidation reactions include:
 - O-glucuronidation
 - N-glucuronidation
 - Acyl glucuronidation

CORNING | Life Sciences

UGT Subfamilies

UGT Subfamily:

Tissue Expression:

11 UGTs are abundantly expressed in the liver (shown in red), UGTs 1A7, 1A8, and 1A10 are found in GI tract.

Locations of Metabolic Enzymes

UGT Latency in HLM

- UGTs are located on the lumenal face of the microsome.
- This limits access of substrates and UDPGA and reduces activity (latency).
- Treatment with detergents or pore forming agents reduces latency.
- Treatments can be "tricky" and kill CYPs.
- Preferred activating agent is "alamethicin".
 - Effective over a broader concentration range
 - Does not inhibit CYPs
- Latency or competing long chain fatty acids (LC-FA) may cause under prediction of Cl_{int}
 - Gill, et al., DMD, 2012

Albumin Effect on UGT Activity

- BSA or HAS-FAF removes fatty acids derived from liver/cell homogenization, which competitively inhibit e.g., UGT2B7 and 1A9, i.e., higher K_m in absence of BSA relative to hepatocytes (Rowland, DMD, 2008)
- Typical BSA concentration is 1% to keep non-specific binding at minimum
- Can also use Intestinal Fatty Acid Binding Protein (Rowland, DMD, 2009).
- BSA can, depending on the UGT, impact both the $K_{\rm m}$ and $V_{\rm max}$
 - UGTs K_m effected: **1A7**, 1A8, 1A9, **1A10**, 2B4, 2B7, 2B15
 - V_{max} effected: 1A1, 1A6, **1A7**, **1A10**
 - No effect on 2B17 kinetics
 - Effect on V_{max} substrate dependent
 - Similar effect observed with recombinant systems
- Adding BSA to incubations has been shown to improve CI predictions (Uchaipichat, BJPK, 2006)
- Under prediction also reported using hepatocytes (Naritomi, Y, DMPK Reviews, 2014)
- Improved CI prediction to within 2-fold by including BSA, alamethicin and both CYP and UGT cofactors (Kilford, DMD, 2009)

UGTs and Drug Interactions

- Fewer relevant drug-drug interactions caused by inhibition of UGTs.
- AUC seldom increase more than 2-fold.

Reasons

- Typically multiple UGTs are involved in metabolism of a single drug.
- K_m values for UGTs are typically high (vs. CYPs), and often higher than the therapeutic plasma levels.
- With exception of UGT1A1, there are relatively few polymorphism that significantly effect enzyme rates.
- UGTs are less susceptible to induction vs. CYPs.

Perpetrator Drug	Victim Drug	Effect
Diflunisal	Indomethacin	2-fold increase in AUC
Valproic Acid	Lorazepam	Increase AUC 20%
Valproic Acid	Lamotrigine	Increase AUC 160%
Probenacid	Zomepirac	4-fold increase in AUC
Rifampicin	Mycophenolic Acid	30% Increase in CL

Examples of UGT Drug-Drug Interactions (Williams, DMD, 2004)

FDA Recommendation for Studying UGTs

"If glucuronidation is a predominant pathway of drug elimination, *in vitro* studies to determine whether the drug is a substrate of UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 are recommended"

UGT Probe Substrates in Human Microsomes

- UGT1A1: Estradiol (3-glucuronide), Bilirubin
- UGT1A3: 25-Trihydroxy Vitamin D3
- UGT1A4: Trifluoperazine, Amitriptyline/Imipramine (high K_m , 100 μ M)
- UGT1A6: Serotonin, 5-hydroxytryptophol (5HTOL), 1-Naphthol
- UGT1A9: Propofol, mycophenolic acid
- UGT1A10: Dopamine
- UGT2B7: AZT, Morphine (6-gluc.)
- UGT2B10: Amitriptyline (low K_m, 10 μM)
- UGT2B15: S-Oxazepam

- UGT1A1: Bilirubin, Atazanavir (in vivo)
- UGT1A4: Hecogenin
- UGT1A6: Naphthol
- UGT1A9: Niflumic acid
- UGT2B7: Fluconazole
- UGT2B10: S-Nicotine

Full panel of chemical inhibitors lacking, inhibitory antibodies do not exist

Kinetic Parameters of Membrane Bound rUGT Enzymes (Corning[®] Supersomes[™] Enzymes)

- Recombinant UGTs are available for all major UGTs isoforms (Corning Supersomes enzymes)
- All Supersomes characterized for probe substrate activity (full kinetics)
- Michaelis-Menten constant (K_m) is consistent with value observed in pooled HLM

		K _m (μM)	
	Substrate	Supersomes	HLM
UGT1A1	Bilirubin	1.1	0.8
UGT1A4	Trifluoperazine	61	85
UGT1A9	Propofol	10	26
UGT2B7	Morphine (6-Glucuronidation)	766	815
UGT2B10	Amitriptyline	7	10

Kinetic Parameters for Amitriptyline and Trifluoroperazine Glucuronidation by UGT2B10 and 1A4 Corning[®] Supersomes[™] Enzymes and HLM

• K_m for TFP 100 μ M in both HLM and 1A4 Supersomes enzymes

CORNING | Life Sciences

UGT2B10 Importance in Drug Glucuronidation

- UGT2B10 is the high affinity (low K_m) enzyme for Amitriptyline N-glucuronidation (Zhou, DMD, 2010).
- UGT2B10 glucuronidates tertiary amines (not active for primary or secondary amines).
- High affinity UGT enzyme for amitriptyline, imipramine, and diphenhydramine tertiary amine substrates – important for Clearance at low doses administered.
- Recently shown to be involved in Desloratadine (Clarinex[®]) metabolite formation (Kazmi, DMD, 2015).
- Splice-site mutation (non-functional protein) detected in African and Asian populations, 45% and 8%, respectively, 1% in Caucasians (Fowler, JPET, 2015)
 - 100-fold lower intrinsic clearance of RO5263397 in hepatocytes homozygous for the splice-site variant allele.

- In vitro tools for studying UGTs still lacking compared to CYPs.
- In vitro models (HLM, hepatocytes) tend to under predict Cl_{int} for drug glucuronidation pathways.
 - Predictions with HLM can be improved by adding BSA, alamethicin and CYP/UGT cofactors to incubations.
- UGT2B10 shown to be important for tertiary amine drugs.
- UGT2B10 polymorphism recently identified (splice variant, no activity), with high frequency in African and Asian populations.

CORNING

For a listing of trademarks, visit us at www.corning.com/lifesciences/trademarks. All other trademarks in this document are the property of their respective owners. © 2015 Corning Incorporated. All rights reserved.