Accompanying paper: SAE 2022-01-0540

REVIEW OF VEHICLE ENGINE EFFICIENCY AND EMISSION CONTROL REGULATIONS AND TECHNOLOGIES

April 5th, 2022

Dr. Ameya Joshi

https://www.linkedin.com/in/joshiav/

What are the problems we are trying to solve in the transportation sector?

Greenhouse Gas (GHG) emissions

Road transport accounts for ~ 1/5th of GHG emissions associated with energy use

Source: Visual Capitalist

Criteria Pollutants

~ 4 million deaths annually attributed to fine particulate (PM_{2.5}) emissions

Nature Comm. 2021, 12:3594 https://doi.org/10.1038/s41467-021-23853-y

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

We are approaching the last major regulations on criteria pollutants (in major markets)

Tailpipe CO₂ standards continue to tighten across the world Europe enforcing electrification, US making up for lost time

US EPA MY 2023 - 26 standards revised

- ~ 7% CO₂ reduction per year
- Multiplier incentives: MY 2023 24 only
 - EV = 1.5, PHEV = 1.3, 10 g/mi cap
- Full-size pickup credits for hybridization through MYs 2023 – 2024

Path to 55% reduction in tank-to-wheel CO₂ emissions shown

> 43% BTE DHE + hybridization + full electrification

FEV, 42nd Intl. Vienna Motor Symposium, 2021

MY 2020 → MY2030

- 10% lower RR
- Lower drag
- 43% BTE dedicated hybrid engine
- CR ~ 14 15,
 Str./Bore ~ 1.3
- Miller VVT, LP c-EGR

*28% $CO_2 \downarrow$ in CS mode

2030 fleet averaged CO₂

40% reduction possible via hybridization alone

55% reduction (2030 target) requires BEV share at 27%

Fleet averaged

Engines are approaching > 45% peak BTE Approach - Dedicated hybrid, lean-burn, pre-chamber, high CR + Atkinson

42% peak BTE **Lean Homogenous**

Ricardo, JLR, U. Brighton, Garrett, JM SAE 2021-01-0637

Increased charge motion & tumble High-energy ignition system 350 bar injection VNT + 48V e-compressor CR 11 \rightarrow can be increased

> After-treatment: EHC//TWLNT + c-GPF + SCR

43% peak BTE 1.5L NA DHE

BYD, SAE 2021-01-1241 FC \downarrow 25%, 3.8L/100km, CS mode

- CR 15.5 + Atkinson cycle
- Stroke / bore = 1.25 1.3
 - Tumble ratio > 2X
 - Friction ↓ 10%

Research engine 47% peak BTE

43.6% peak BTE

Ultra-lean + Jet Ignition + High CR + opt. fuel/lube

MAHLE, ExxonMobil SAE 2021-01-0462

Nissan 50% BTE

"STARC" comb. - Fixed point dedicated charging

*Strong Tumble & Appropriately stretched Robust ignition Channel

NMOG + NOx

Fleet avg.

California Advanced Clean Cars II proposal Broadly phasing in over 2026 – 2028

LEV 4

Fleet average NMOG + NOx

30 mg/mi & ZEV phase out

- Cert. bin: LEV160 & ULEV125
 New bins down to SULEV15
- Separate FTP, US06 & SCO3 cert.
 US06 standard identical as FTP

Particulates

PM limit $6 \rightarrow 3$ mg/mi on US06 Phase-in: 2027 – 2030 (25% each year)

Intermediate soaks

Limits:10min=0.5x, 40min=0.767x, 180+min=1.0xFTP

Quick drive-away (FTP)

Current 20 sec idle + new 8 sec idle

PHEV high powered cold-starts

Cold-start US06 limits per cert bin (e.g. 100 mg/mi NMOG+NOx for SULEV30)

US06 capable PHEVs exempt

ZEV mandates

Target 100% ZEVs & PHEVs by 2035

- PHEVs must have >50 mi AER (and > 40 mi on US06)
- EJ credits for 25% discount off MSRP to qualified low-income household

SAE INTERNATIONAL

Paper # (if applicable)

Euro 7 Light-duty

Not a formal proposal yet - based on AGVES meetings (EU Commission)

Units: Gas mg/km, PN #/km	NOx	PN	PM	СО	НС	NH ₃	НСНО	N ₂ O ^(b)	CH ₄ (b)
Euro 6d – Gasoline	60	$PN_{23} = 6x10^{11}$ GDI only	4.5	1000	THC = 100 NMHC = 68	-	-	-	-
Euro 6d – Diesel	80	$PN_{23} = 6x10^{11}$	4.5	500	HC + NOx = 170	-	-	-	-
Euro 7 Fuel & technology neutral	20 – 30	$PN_{10} = 1 \times 10^{11}$	2	400 ^(a)	NMOG 25 – 45	10	5	10 – 20	10 – 20

Fuel & technology neutral	20 30	114 ₁₀ – 1X10		400	25 – 45	10	3	10 20	10	20
No conformity factors (a) CO included in RDE (b) Or $N_2O + CH_4 < sum of individual conformation of the $							lividual	llimits		
In-service conformity On-road PEMS testing		Main changes in Euro 7								
Trip		Testing under "all" normal driving conditions								
Boundary conditions		Normal : - 7 to + 35 °C, Alt. 1,600 m Extended (Limit 3x): - 10 to + 45 °C, Alt. 2,200 m								
Cold start		Budget for total emissions in mg or total PN for $<$ 16 km. Power restrictions in first 1 $-$ 2 km tbd.					d.			
Other		No conformity factors (RDE limits = WLTP) Regen emissions included – averaging of 2 tests, one with and one without regen								

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Gasoline after-treatment systems for ~ Euro 7 / ACC 2.0 / China 7

Low thermal mass substrates can help meet upcoming standards with good margin and/or reduced PGM

Corning, Sino-Pt Metals Cat., SGMW, SAE 2021-01-0581 doi:10.4271/2021-01-0581

NOx emissions

NOx [mg]

600

400

200

HC traps could help reduce cold start emissions – various innovative substrate and coating technologies being demonstrated

Corning 30th Aachen Colloquium 2021

Vehicle D-segment SUV, 2L TGDI

Ultra-high porosity substrates for in-wall zeolite coating

ORNL, DOE Annual Merit Review, 2021

HCT reduces THC by 65 – 77% over 1st bag of FTP cycle

<u>Vehicle</u> MY2018 GDI pick-up trucks, 2.7L turbo V6 and 5.3L NA V8

THC reduction	TWC → HCT	TWC → HCT+GPF
Cold-start (250s)	76%	88%
Cold-Start (505s)	65%	77%

Ammonia slip catalysts can help meet Euro 7 NH₃ proposed limit

Umicore, SAE 2021-01-0580 doi:10.4271/2021-01-0580

9 China 6b compliant vehicles tested on WLTC / RTS-95

Vehicle	A	В	С	D	E	F	G	н	1
Engine Type	TD L4	TD L4	TD L3	MPI L4	TD L4	TD L4	TD L3	TD L4	TD L3
Vehicle Type	ICEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
Displacement (L)	1.6	2.0	1.5	2.0	1.5	1.4	1.5	1.6	1.0
Catalyst Status	Fresh	Fresh	Fresh	Aged	Aged	Aged	Aged	Aged	Aged
Turbocharged direct in	election (TD) N	dultinoint inic	action (MDI)	In line four or	three cylinde	ere (I A or I 7			

Production after-treatment – TWC, GPFs

NH₃ can exceed potential Euro 7 limit WLTC Euro 7 ~ 10 mg/km 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00

With add-on ASC, NH₃ emissions <10 mg/km

uF TWC not as effective at NH₃ control but can address other criteria pollutants better

Highly dispersed catalysts synthesized via "atom-trapping" method promise very high reactivity

U. New Mexico, WSU, et al. Applied Catalysis B: Environmental 284 (2021) 119722

PNNL, DOE Annual Merit Review 2021 BET surface area after heating to 800° C in air for 5 hours

CO oxidation used as probe reaction Light-off T < 150° C demonstrated

can lead to particle growth of dopant, and

minimal effect on ceria surface area

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Advanced GPFs enable gasoline vehicles to be "negative" emitting

GPFs being developed for Euro 7

Very high "out-of-the-box" filtration (incl. < 23nm particles) at lower pressure drop

Particulate emissions evaluated under Euro 7-like conditions with advanced GPF

EU Commission, JRC Catalysts 2022, 12, 70.

Vehicle:

2019 Euro 6d-Temp, 1.2L GDI with TWC + bare cc-GPF Fuel: E5 with PMI 2.2 ("bad quality" market fuel)

GPF: Bare 200/8 with 55% porosity, hierarchical pore structure

SPN > 10 nm with catalytic stripper

<u>Tests</u>: WLTC and RDE with challenging conditions (~Euro 7):

Clean GPF, dist. < 16 km, low T with auxiliaries, hard accelerations, dynamic driving on slope, 90% payload, etc.

GPFs are very effective at reducing toxicity of PAHs associated with engine soot

U.S. EPA, CSS, 32nd CRC Real World Emissions Workshop, 2022

<u>Vehicle</u>: 2011 Ford F150, 3.5L Ecoboost, wall-guided GDI Commercial cGPF in uF position Ø5.66" x 4", 300/12, coated

- PM reduced by > 94% and well below CA limit of 1mg/mi
- PAHs reduced by >99% (filter-collected) and 55% (gas-phase)

GPF reduced the toxicity of filtercollected PAHs by 99.8%

US needs to enforce GPFs: Particulate emissions are higher from US cars vs. EU – and they affect disadvantaged communities disproportionately

Same models in US are emitting much higher particulates than those sold in Europe

EmissionsAnalytics, on-road measurements

Gasoline particle emissions is a leading contributor to environmental injustice

Sci. Adv. 7, eabf4491 (2021) U. Illinois at Urbana-Champaign, U. Washington, UT Austin, UC Berkeley, U. Minnesota

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Light-commercial vehicles – Technology packages used to meet Euro 6d final regulations described Volkswagen, 42nd Intl. Vienna Motor Symposium, 2021

EA288 light commercial vehicle 2.0L engine

Engine

Injection system : 2200 → 2500 bar Solenoid valve technology → up to 9 injections

High-P EGR (cooled or uncooled)
Low-P cooled FGR

After-treatment

- DOC + DPF//SCR + 2xSCR
- Close-coupled DOC & DPF with SCR coating – 1st for commercial vehicle
- Downstream SCRs with independent urea injection (twin dosing) and ammonia ox. cat.

NOx reduced by 55%

CO_2 reduced by 3 – 6%

Fuel: Engine capable of running on renewable diesel (HVO)

Light-duty diesel after-treatment systems for ~ Euro 7

SAE INTERNATION

Light-commercial vehicles: Pathway to meet Euro 7 limits under a wide range

FEV, 30th Aachen Colloquium, 2021

Simulation conditions

of driving conditions

Vehicle: Unloaded 2t, loaded 3.5t,

with trailer 7t Engine: 2L, 140 kW Temp = - 7° C, 16 km Empty + urban dynamic (TfL) | Fully loaded + aggressive dynamic (BAB) | Fully loaded + trailer + uphill driving

Low NOx and low wells-to-wheel CO₂ demonstrated through advanced aftertreatment and renewable fuels AECC, CONCAWE Sustainability 2021, 13, 12711

Vehicle C-segment Euro 6b mild-hybrid diesel

<u>Fuels</u>

- 1. B7 diesel
- 2. Diesel with 30% FAME blend (B30)
- Hydrogenated vegetable oil (HVO)

EGR

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

In-use PEMS testing shows high NOx emissions at low loads / idling

UC Riverside, SCAQMD https://doi.org/10.1016/j.scitotenv.2021.147224

Fleet:

2 diesels <u>without</u> SCR, 14 with SCR, 2 diesel hybrids, 29 CNG, 3 LPG Vehicles within useful life (< 435,000 miles)

Reduction in NOx compared to Diesel w/ SCR 0.02 CNG LPG Diesel hybrid 94% 79% 65%

Improved SCR activity also reduces CO₂

Significant fraction spent in idling

 \rightarrow Almost 1/3rd of emissions during idling

California Ultra-Low NOx Omnibus Rulemaking

US EPA Cleaner Trucks Plan proposed (March 2022)

Final rule after 45 day comment period

Option 1 (~ CARB after MY 2031):

NOx limit: 20 mg/bhp-hr after MY 2031

<u>FUL</u>: Increases to 600K mi in 2027 and 800K mi in 2031

Option 2:

NOx limit: Fixed at 50 mg/bhp-hr after MY2027

FUL: Fixed at 650K mi

Test changes

- New low-load cycle (LLC) test similar to CARB
- Off-cycle testing: Similar to California's 3-Bin MAW method
- HD SI engines will require testing on SET lab cycle (previously only for CI engines)

Multi-pollutant rule: Targeted revision of GHG Phase 2 MY2027 – 2029 standards for applications with significant electrification: School buses, transit buses, commercial delivery trucks, and short-haul tractors

- Credit multipliers for early compliance, and credits for HEVs/BEVs/FCEVs
- No emission credit multipliers for HEVs/BEVs/FCEVs

 PN_{10}

NOx

Excluded

Euro VII CLOVE proposal

Payload

Cold start

Durability

Boundary conditions

Evaluation method

Units: Gas mg/kWh, PN #/kWh

100 percentile	175 – 350	5x10 ¹¹	12	1500 – 3500	75 – 200	65	160	85 – 100
90 percentile	90	1x10 ¹¹	8	200	50	65	60	50
Budget ≤ 3xWHTC work	100 – 150	2x10 ¹¹	10	600 – 1250	50 – 75	65	140	30
Lower limit assumes cc-SCR, higher limit assumes active heating. Limits up to 700K km for N3 > 16t and 300K km for others.								
In-service conformity On-road PEMS testing	Euro VI-D (201	019) Euro VI-E (2021)			Euro VII (2025+)			
Trip	30% Urban, 25% Rural, 45 Motorway%			vay%	Testing under "all" normal driving conditions			
Power threshold	> 10% P _{max}				No P threshold: Inclusion of low load emissions			

Included, T_{coolant} > 30 ° C

PM

CO

NMOG

NH₃

No payload restrictions

Normal : - 7 to + 35 $^{\circ}$ C, Alt. 1,600 m

Extended: - 10 to + 45 ° C, Alt. 2,200 m (Limit 2x)

Included, all emissions from engine start

3 compliance methods / limits (see below)

N2,N3, M3 < 16t: 700,000 km

N3 > 16t: 1,200,000 km

 N_2O

 CH_{4}

10 - 100%

 $-7 \text{ to} + 38^{\circ} \text{ C, Alt. 1,600 m}$

90th percentile < limit for compliance

N2,N3, M3 < 16t: 300,000 km / 6 yrs

N3 > 16t: 700,000 km / 7 yrs

Potential low DOC DRE SCR SCR ASC **Euro VI / US 2010** Ref. **NOx systems** DOC DRE SCR SCR ASC 1 SCR SCR ASC Euro VII / CA2027 3 (example configurations) DOC DRE SCR SCR ASC 4 DOC DRE SCR SCR ASC 5 2nd"Close-coupled" Conventional SAE INTERNATIONAL catalysts filter system 33

	Technology for low NOx	Impact on NOx	Impact on CO ₂		
	Engine calibration	Lower engine out NOx	Little / none		
	Cylinder deactivation	Increased EO temp. → higher NOx conversion	Lower CO ₂		
Engine	EGR pump	Better EGR authority	Improved pumping loop efficiency		
Eng	SuperTurbo	Turbine bypass allows for early SCR warm-up	Engine heating can be offset		
	Opposed piston	Elevated temp. for early LO	Lower heat loss → lower CO ₂		
	Hybridization	Lower fuel consumption and emissions	Lower CO ₂ , can offset EHC penalty		
~	Increase SCR volume and catalyst loadings	Improved deNOx at high flow rates	Increased backpressure		
SCR	Added cc-SCR w/ twin dosing	Early light-off and urea dosing possible	Increased backpressure		
Added	+ cc-DOC for NO ₂	Increased fast SCR, slower light-off of cc-SCR	Increased backpressure, N ₂ O		
	SCR on filter	Early light off of main (uF) SCR	Passive regen is complicated		
+	Model based A/T controls, NH ₃ storage	DeNOx sensitive to level of pre-stored NH ₃	Lower urea consumption		
	Late & multiple injections	Early light-off	Fuel penalty, increased HC/CO		
Heat	Heated urea dosing	Early urea dosing, lower deposition risk	Some fuel penalty for heating		
工 +	Catalyzed DEF solution	Low nitrate deposits, earlier dosing possible	Can eliminate heated dosing		
	Electrical heater / EHC	Early light-off	Need to manage fuel penalty		
Fuel	Diesel → CNG / LPG / Gasoline / H2-ICE /	Lower engine out NOx and/or simpler A/T	Watch for CH ₄		
T ;	Low S, low impurity fuels	Extended durability	Lower CO ₂ → reduced desulfation		

Dynamic cylinder deactivation increases exhaust temperature and delivers significant NOx and CO₂ reductions Tula SAE COMVEC 2021

Baseline Engine Specifications:

- Cummins X15 Efficiency Series
- 15L I-6 HHD Diesel373 kW (500 hp) Max Power
- > 2508 Nm (1850 lb-ft) Peak Torque
- ➤ HP-EGR

ENG

- XPI High Pressure Common Rail Fuel System
- Single Stage Variable Geometry Turbocharger

Baseline Aftertreatment Specifications:

- AT DOC/DPF

 DEF Injection System
 - Cu-Ze SCR/ASC
- Baseline

 200

 200

 Baseline all cylinder drops

 EGT under 150°C

 0 600 800 1000 1200 1400 1600 1800

 Engine Speed (rpm)

- With dynamic skip fire, engine out temperature increased by 50 – 90° C, and > 225° C over map
- HD-FTP: 74% reduction in NOx with 5% CO₂ reduction
- LLC: 23% reduction in NOx with 0.8%
 CO₂ reduction
- Implemented on Freightliner Cascadia

SAE INTERNATIONAL

SWRI/CARB Low NOx study: Latest results with system aged to 800K

SWRI, CRC Real World Emissions Workshop, 2022

Engine:

Cummins 2017 X15 6-cyl.

- + modified calibration
- + added advanced technologies EGR cooler bypass, Cyl. deactivation

After-treatment: Stage 3 Rework

Note:

- Almost no change in CO₂ (not shown)
- Infrequent regen. Upward adjustment factor not included, adds 0.002 to FTP-RMC, 0.005 to LLC

SAE INTERNATIONAL

Electrically heated catalysts for HD Low NOx?

AVL CLEERS 2021 & MTZ 03/2021

PACCAR, Vitesco Aachen Colloquium, 2021

Engine: 2017 PACCAR MX-13, HE400 After-treatment: + 48V EHC + cc-SCR (dual dosing)

Eaton, SWRI, Corning, to be published

Opposed piston engine: Real-world on-vehicle data

AchatesPower, CRC Real World Emissions Workshop, 2022

1st Gen : Peak BTE 47.1%

2019 Peterbilt 579 sleeper 10.6L 400 hp engine

Walmart fleet in-use data 10+% fuel economy advantage vs reference 2021 DD15 engine

Dev. aged

6.7 – 10.8 mpg vs 5.7 – 7.7 on ref. truck

FTP NOx: 0.016 g/bhp-hr

2nd Gen: Peak BTE 49.2%

<u>Added hardware</u> SuperTurbo, EGR pump

vs Gen 1:

5% lower CO₂ on SET, 8% on Hot FTP 30% higher exh. heat for cat. LO- mode

Underfloor SCR only

> 30% margin on in-use 3-bin MAW 2031 limits

	Achates_	Achates_	Achates_	Average	EPA Low	Margin to	CARB	Margin to
	D1	D2	D3	Average	2031+ IUL	EPA	2030+	CARB
BIN 1	0.25	0.05	0.15	0.15	11	99%	7.5	98%
BIN 2	0.048	0.039	0.039	0.042	0.105	60%	0.075	44%
BIN 3	0.024	0.015	0.022	0.020	0.042	52%	0.030	32%

Modeled based on measured engine out

	Modeled based on medsured engine out					
	Achates Power HD Second Generation Engine	2027 Regulatory Limits (CARB/EPA)	Improvement vs. 2027 Standards			
SET Cycle	0.014 g/hp-hr NO _x 415 g/hp-hr CO ₂	$0.020 \text{ g/hp-hr NO}_{x}$ $432 \text{ g/hp-hr CO}_{2}$	30% 4%			
FTP Cycle	0.007 g/hp-hr NO _x 465 g/hp-hr CO ₂	$0.020 \text{ g/hp-hr NO}_{x}$ $503 \text{ g/hp-hr CO}_{2}$	65% 8%			
Low Load Cycle	0.021 g/np-hr NO _x	0.050 g/hp-hr <i>NO_x</i>	58%			
Clean Idle	0.02 g/hr NOx	5 g/hr NO _x	99.6%			

Low NOx emissions demonstrated on a European truck

JRC (EU Commission), AECC, FEV, Horiba, AIP Catalysts 2022, 12, 184

Vehicle

MB Actros 1845 LS 4x2 Euro VI C, 12.8 L, 6 cyl., HP EGR.

After-treatment system

Parts aged to 500K km target

Test conditions

Type	Starting Condition	Payload (%)	Ambient T (°C)	Conditioning Performed
WHVC	Cold, Hot	55	-7, 0, 23	yes, no
Real World Test	Cold	10	-7, 23, 35	yes
Urban delivery	Cold	10, 55	-7, 23	yes, no
JRC city	Cold	10	-7	yes
Brenner cycle	Cold	10	-7	no
Idling	Hot	-	23	no
DPF regeneration	Hot	-	23	no

Test condition	NOx	PN
Ambient T. 23 °C → -7°C	\uparrow	↑
Payload 50% → 10%	\uparrow	\downarrow
Dynamic, low speed driving	↑	\uparrow
Pre-conditioning (urea depletion)	\uparrow	-

39

 $PN_{23} \rightarrow PN_{10}: +15 - 30\%$

Sub-23 nm and urea derived particles could push tailpipe PN > Euro VII limit

Cummins, UC Riverside, W. Virginia Univ., Horiba, AVL, TSI SAE 2021-01-5024 doi:10.4271/2021-01-5024

1. Measurements using evaporation tube

Engines: 2 diesels with DOC, DPF, SCR 1 diesel with DOC, SCR | 2 NG with TWC

166 test cycles: NRTC, WHTC, WHSC, RMC, ...

Sub-23 nm particles increase PN count by

10% to 3.8X (280%)

Engine	Fuel	Aftertreatment	Test runs	CPC7:CPC23 ratio (Min, Avg, Max)
AA	ULSD	DOC + SCR	7	1.30, 1.30, 1.40
AB	ULSD	DOC + DPF + SCR	21	1.40, 2.37, 3.80
AB	B20	DOC + DPF + SCR	12	2.10, 2.74, 3.40
AC	NG	3-way catalyst	35	1.50, 1.96, 3.40
AD	ULSD	DOC + DPF + SCR	64	1.10, 1.40, 3.10
AE	NG	3-way catalyst	27	1.25, 1,60, 3.20

Majority of sub-23nm particles associated with hydrolysis & decomposition of DEF at T > 250 ° C

Paper # (if applicable)

2. Measurements using catalytic stripper (2 CNG engines)

Catalytic stripper important for > 23nm as well!
(at least for NG engines)

Topics covered today

Light-Duty

- Regulations: Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

All pathways for decarbonization being pursued – no silver bullet

Super-Truck II: 55% brake thermal efficiency demonstrated

Strategies from Super-Truck II participants for 55% BTE engines

	Daimler Projetion Citicon Package	Volvo	Cummins / Peterbilt Propried Peterbilt Pe	Navistar International Problem ES Efficiency Package	PACCAR / Kenworth
Combustion & Air Mgmt	 Thermal barrier coatings (TBC) Miller cycle 2 stage turbo & 2 stage c-EGR 	 TBC High CR 23:1, wave piston EGR pump Optimized turbocharger Miller cycle 	 Low heat transfer Reduced friction High efficiency turbocharger 	 Cylinder deactivation Fuel injector and cylinder bowl optimization 	 Thermal barrier coatings (TBC) 2-stage turbocharger
Waste heat recovery	Recovery from exhaust & EGR	48V e-WHR Dual-loop recovery from coolant & Exhaust	Dual HP & LP loop Recovery from coolant, EGR & exhaust	+3% BTE demonstrated	On track for +4% BTE Dual HP & LP loops, recovery from coolant + exhaust
After- treatment	cc-SCR w/ dual dosing	High cell, thin wall subs., low ∆P short DPF/SCR	Dual loop EGR On-engine DOC/DPF	cc-SCR/AMOX and also EHC after upstream SCR – durability & fuel penalty being evaluated	48 V e-heater + SCR in cc position, dual dosing. Targeting 2027 UL NOx.

SAE INTERNATIONAL

HD ZEVs*: CARB mandates in place, OEMs have announced several models Long-haul challenges – large battery pack (weight, price, charging time), infrastructure

California Advanced Clean Trucks Regulation

Also adopted by Washington state, Oregon, New York, New Jersey and Massachusetts

Manufacturer ZEV*
requirements as a % of
annual sales

Plug-in hybrids get partial credit based on all electric range

6 states have adopted ACT, including California

MOU signed by 15 states + DC - Represent ~ 34% of HDV market 30% sales by 2030, 100% by 2050

Model Year (MY)	Class 2b-3	Class 4-8	Class 7-8 Tractors
2024	5%	9%	5%
2025	7%	11%	7%
2026	10%	13%	10%
2027	15%	20%	15%
2028	20%	30%	20%
2029	25%	40%	25%
2030	30%	50%	30%
2031	35%	55%	35%
2032	40%	60%	40%
2033	45%	65%	40%
2034	50%	70%	40%
2035+	55%	75%	40%

> 1MWh battery pack needed for 500+ mile range

5 – 9% lower range at – 7 or +35° C (ICCT) Range also varies with payload

^{*} ZEVs defined as vehicles with zero tailpipe CO₂ (BEV, FCEV)

Wells-to-wheel analysis: Battery electric long-haul trucks could offer ~ 15% GHG reduction by 2030. But PM emissions could increase by 100%.

Argonne Natl. Lab Environ. Sci. Technol. 2021, 55, 1, 538-546

WtW GHG Emissions, 2019 US Grid

WtW GHG, Long-haul trucks US grid 2019 & 2030

PM emissions increase by 2X due to coal-based electricity

- Class 4 6 BEV trucks offer significant WtW CO₂ reduction
- Class 8 trucks offer little CO₂ reduction today, improve to 15% by 2030
- Emissions vary across regional grids \rightarrow in some parts CO_2 increases up to 25%
 - PM emissions predicted to increase due to coal-based emissions (need better controls)

Battery pack and fuel cell prices need to significantly reduce for total cost of ownership parity for BEV and FCEV long-haul trucks vs diesels

Single-Shift,

scenario

costs

Volume-Limited

No dwell time

No lost payload

capacity costs

Weight-Limited

+ Lost payload

capacity costs

Multi-Shift,

scenario

FASTSim tool used to model various powertrains and applications over representative drive cycles

Some key assumptions in the study

Battery pack price:

\$197 /kWh today \rightarrow \$100/kWh (2025) \rightarrow \$

80 /kWh (2050)

Battery pack mass: 4.7 kg/kWh today \rightarrow 2.5

kg/kWh (2050)

- H_2 price \$10/kg today \rightarrow \$4 (2050)
- Fuel cell cost:

 $$197/kW \text{ today } \rightarrow $60/kW (2050)$

- Diesel Class 8 efficiency : 47% today → 52% (2025) → 57% (2050)
- Diesel cost:

Advanced engine: +\$1,500 in 2025, -\$6,000 (2050)

WHR adds \$10K in 2025, \$5K (2050)

NREL (2021) https://www.nrel.gov/docs/fy21osti/71796.pdf

Class 8 long-haul tractor (750-mile range)

pplicable)

Total cost of ownership of H₂-ICE similar to diesels by 2030

80% carry-over parts from diesels

MAN, 42nd Intl. Vienna Motor Symposium, 2021

Engine specific parts

80% carry-over parts from diesels

- H2 and CH4 specific parts
 - Pistons/Liners
- Single-stage turbo
- Cylinder head
- Ignition system
- Gas handling (H2 and Air)
- Control unit
- Intake throttle

Peak BTE 45% (similar to diesel) – but with 99% lower NOx at road load point

After-treatment : Only SCR

Engine upsizing for transient response

- Direct injection for improved efficiency and low end torque
- Fuel tank: 700 bar system
- Single-stage turbo sufficient to reach λ = 2.7 and low engine out NOx

Engine can provide comparable torque as a 13L diesel

SAE INTERNATIONAL

Decarbonization will require massive investment in renewable electricity and minerals

Annual solar PV capacity additions need to reach 630 GW by 2030 → equivalent to installing the world's current largest solar park roughly every day

Paper # (if applicable)

2020

earths

<u>Batteries</u>:

160 GWh today to 6,600 GWh in 2030

→ equivalent of adding ~ 20 gigafactories each year for the next ten years

SDS = Paris agreement (< 2 ° C), NZE = net-zero by 2050

Diverse technology solutions available to achieve clean air goals

R & D	TECH MATURITY &	EXISTING INFRASTRUCTURE	
Correct	Avoid	Shift	Improve
CO ₂ capture Synthetic or e-fuels	Telecommuting Geo-fencing Electrification Green H ₂ , NH ₃ , etc. Recycling	Public transportation Rail & marine for goods Ride-sharing Renewable fuels Cycling	Improved ICE efficiency Hybridization Improved aftertreatment systems Light-weighting, aerodynamics etc. Predictive cruise control, platooning Waste heat recovery Particulates from tires

Thank you

Dr. Ameya Joshi Corning Incorporated

For a copy of the slides:

joshia@corning.com

https://www.linkedin.com/in/joshiav/