FAQ 구성 상세 정보
What is Epic®?
Epic is a broad utility platform label-free optical biosensor technology used for cell-based, biochemical, and compound aggregation assays. The Gen I Epic System is compatible with 384-well and 1536-well Epic microplate formats, while the Epic BT System is compatible with 96-well, 384-well, and 1536-well Epic microplates. Both systems can be integrated with existing automation for high-throughput screening. Epic Technology is also available in the EnSpire® Multimode Plate Reader available from PerkinElmer®. Generally, Epic assays have reduced assay development times and enabled researchers to obtain more physiologically relevant data.
FAQ 구성 상세 정보
What assay classes have been demonstrated using Epic Technology?
Epic Technology is applicable across a wide-variety of biochemical assays including small molecule-protein binding, functional protease, kinase, protein-protein interactions, and compound aggregation. GPCRs, RTKs, and ion channels are the most common assay classes for cell-based assays in both cell line and primary cell types. For a complete list of Epic applications, please see our technical library.
FAQ 구성 상세 정보
What is the role of liquid handling in Epic assay performance?
Liquid handling parameters can impact maximum assay response, assay variability and robustness (Z'). Recommended starting set points for z-height, dispense/aspirate speeds and volumes, and number of mixes for both biochemical and cell-based assays can be found in the standard assay standard operating procedures (SOPs). Corning Field Application Scientists can provide on-site training for optimizing liquid handling parameters.
FAQ 구성 상세 정보
What service and support does Corning offer for Epic Technology?
Assay support is provided by Corning's team of Field Application Scientists (FAS), who are based in North America, Europe and Japan. In addition, Corning has a team of Field Service Engineers (FSE) to provide knowledgeable service on Epic instruments, worldwide. Corning also has an Applications Center in Kennebunk, Maine where ongoing work is done on Epic application development.
FAQ 구성 상세 정보
Can I coat Epic microplates myself?
Corning offers cell-based assay microplates pre-coated with fibronectin in 96-well, 384-well, and 1536-well Epic microplate formats. However, uncoated cell-based assay microplates can be used for "do-it-yourself" coatings. Please contact your local Drug Discovery Specialist or Field Application Scientist for specific details.
FAQ 구성 상세 정보
How do I know that the signal I measure in an Epic assay is specific?
As with other assays, specificity in Epic assays is determined by the use of appropriate positive and negative controls, and experiments designed to answer the following questions: Is the response dose-dependent? Is it saturable? Can it be inhibited?
FAQ 구성 상세 정보
What are the advantages of Epic assays compared to traditional (fluorescence, luminescence, radiolabeled) assays?
Unlike fluorescence, luminescence and radiolabeled assays, Epic assays avoid the time and expense associated with labeling. The use of fluorescent or radioactive labels not only requires a priori knowledge of targets and their natural ligands, but has been known to cause undesirable and unanticipated interactions that can compromise screening data and lead to false conclusions. Additionally, Epic label-free assays enable researchers to use non-engineered cell lines and primary cells ensuring a more physiologically relevant response.
FAQ 구성 상세 정보
Can Epic Technology be used with complex/crude samples?
Yes. Biochemical assays have successfully been performed with samples in serum and cell lysates. Cell-based assays have successfully been performed in culture media.
FAQ 구성 상세 정보
What is the DMSO tolerance of Epic assays?
Biochemical assays have been run with up to 5 % DMSO and cell-based assays with up to 2.5 % DMSO. In both cell-based and biochemical assays, it is important to match the DMSO concentration of the assay buffer with that of the compounds being tested. A DMSO mismatch will result in a large response that may mask the response of an agonist, in the case of cell based assays, or of a binding event, in the case of biochemical assays. In aggregation assays, an intentional DMSO mismatch is performed.