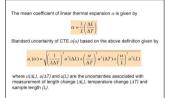
SPIE Conference 2002

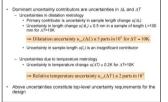
Ultra-High Accuracy Measurement of the Coefficient of Thermal Expansion for Ultra-Low Expansion Materials

By Dr. Vivek G. Badami, Dr. Michael Linder


Abstract

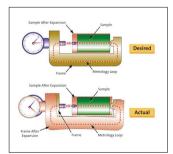
Microlithographic systems rely on precision alignment and a high-level of dimensional stability to achieve required performance. In critical applications, immunity to thermally induced dimensional changes is achieved by the use of low coefficient of thermal expansion (CTE) materials such as ULE[®] in components such as reflective optics and machine structures. ULE[®] has an expansion coefficient (α) that is typically in the 0 \pm 30 ppb K⁻¹ range and it may be engineered to achieve a specific value. A high-accuracy determination of the CTE is essential for both process control and for providing an essential input to the design of such systems for error budgeting purposes. Currently, there is a need for CTE determination with an uncertainty $U(\alpha) < 1$ ppb K⁻¹ (k=2) in the 273-373K (0-100°C) temperature range. This effort is aimed at developing techniques for performing this measurement.

Requirements Definition


S. No.	Parameter	Value		
1	Sample materials	ULE® Zerodur® Fused Silica		
2	Temperature range for CTE determination	273-373 K (0-100 °C)		
3	Sample sizes/envelope	 • \$\$\phi25 \times 100 mm cylinder • 25 \times 25 \times 200 mm block 		
4	Uncertainty u(a) (k=2)	<1 ppb K ⁻¹		

Uncertainty Analysis

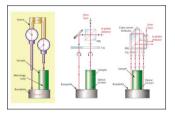
CORNING

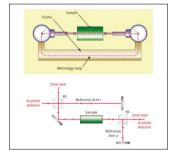

tributions from	each of the sources of uncer	tainty is given below
Uncertainty source	Uncertainty value	Contribution (K-1)
$u(\Delta L)$	0.5 nm	0.5 × 10 ⁻⁹
$u(\Delta T)$	0.2 K	0.2 × 10 ⁻⁹
u(L)	10 µm	0.001 × 10 ⁻⁹
	Standard uncertainty in CTE $u(\alpha)$	~0.53 × 10 ⁻⁹

Fundamental Issues with Measurement of Dilatation

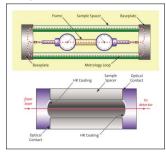
The fundamental issue with making a dilatation measurement is distinguishing between the dimensional changes of the sample and that of the instrument structure. Dimensional changes of any part of the metrology loop (including the frame or sensors) is indistinguishable from changes of the sample.

The aim of the design is to separate/eliminate or minimize the influence of undetected dimensional changes in the metrology loop not directly attributable to the sample. These undesirable changes may be mechanical, thermal or optical in orgin. The following figures illustrate some current high-accuracy techniques. The metrology loop is identified along with practical realizations of some of these configurations.




Ultra-High Accuracy Measurement of the Coefficient of Thermal Expansion for Ultra-Low Expansion Materials

Michelson/Modified Michelson Dilatometer


CORNING

Double Michelson Dilatometer

Fabry-Perot Dilatometer

Comparison of Current High-Accuracy Methods

Method	Advantages	Disadvantages	Uncertainty estimates
Michelson/ Modified Michelson	 Null test can be performed easily Sample length can be varied Reduced number of optical contacts relative to Fabry- Perot Simpler sample preparation relative to Fabry-Perot 	 Lower sensitivity relative to Fabry-Perot Some residual uncertainty due to optical contact Beam interruption cannot be tolerated 	5-60 ppb K ⁻¹
Double Michelson	 No optical contact Sample length can be varied Simple sample preparation 	 Null test cannot be performed easily Largely non-common path Lower sensitivity relative to Fabry-Perot 	8-40 ppb K ⁻¹
Fabry-Perot	 High sensitivity Tight metrology loop Tolerant to beam interruption No separate reference arm 	 Uncertainty due to two optical contacts Temp. dependent phase change on reflection Sample length cannot be varied easily Costly sample preparation 	5-10 ppb K ⁻¹

Challenges

- Dilatation metrology with uncertainty less than 5 parts in 10° for 10K temperature change
- Spurious metrology loop displacement
- Interferometer nonlinearity
- Effects of optical contacts
- Temperature dependent changes in phase changes on reflection
- Sample alignment stability
- CTE variation
- Thermal gradients
- Temperature metrology with an uncertainty of 0.2K over 10K step
- Sample heating and cooling
 - Part time constant
 - Thermal stability of structure

Timeline

2001	2002				2003	
Q4	Q1	Q2	Q3	Q4	Q1	Q2
Requirements definition/capability survey		Design and build instrument			Debug and test	