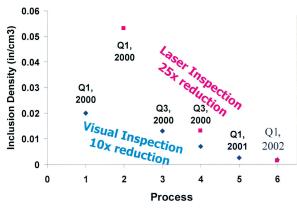
## Improved Characteristics of ULE® Glass for Meeting EUVL Needs



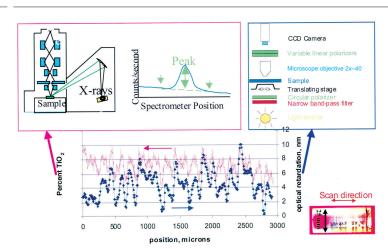

Brad Ackerman, Vivek Badami, Rich Fiacco, Chris Heckle, Dave Jenne, Kenneth Hrdina, Mike Linder, John Maxon, Brent McLean, Dave Navan, Rob Sabia, and Mike Wasilewski

### Introduction:

ULE® Glass is a low expansion silicate glass that has been historically used for ground and space based telescope mirrors. Industry experts have now identified ULE Glass as a material of choice for EUVL, with some property improvement required. Striae and homogeneity are two properties which require improvement for optics applications. Striae in standard ULE glass has been found to impact mid spatial frequency roughness of optics. EUVL grade ULE Glass has been tailored to eliminate this issue. Metrology tools are being developed to meet homogeneity needs.

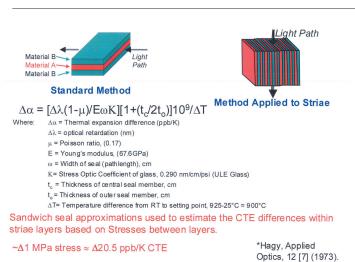
### Inclusion Reduction ... Results from 1999–2002



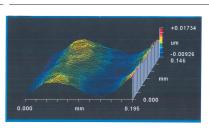

## **Metrology Improvement:**

Laser system increases detection limit from 80 µm to 1 µm.

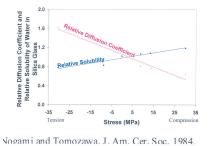
## Material Improvement:


Shows inclusions reduced 10 to 25x.

### Further Characterizing of Striae




Striae characterized as compositional differences and also stress differences within glass.


## Evaluatin Striae with: Sandwich Seal\* Test



## **CMP** Polishing



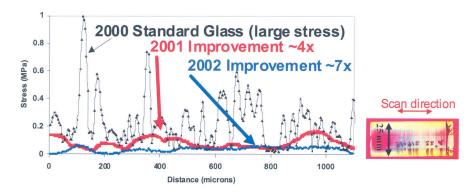
Smoothness of surface suggests primarily chemical removal during super-polishing ( lack of fracture surfaces).



Stress state in silica glass known to impact diffusion and solubility of water into glass\*.

-

### Correlating Roughness to Stress within Striae


# 120 100 80 60 500 1000 P-V Stress (kPa)

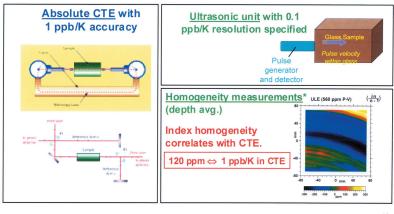
#### Conclusions:

Reduced stress within striae reduces roughness.

P-V roughness sensitive to polish procedures.

### Striae Reduction ... Results from 2001–2002




**Metrology Implementation:** 

Microprobe and polarimeter identified as metrology tools.

**Material Improvement:** 

Shows striae stress levels reduced 7x

### Metrology Improvements Needed ... 2002–2004



\*Data and graph courtesy of M. Johnson, and G. Sommargen.

### Metrology:

Identified new equipment required to meet EUVL specifications. Construction and purchase of equipment precedes material improvements.

## Material:

CTE low frequency homogeneity improvements required.

### Property and Characterization Roadmap

|                                            | 2000                    | 2001                    | 2002                 | 2003                   | 2004                | 2005                   |
|--------------------------------------------|-------------------------|-------------------------|----------------------|------------------------|---------------------|------------------------|
| CTE crossover Mask Class A (ppb/K)         | ±5                      | ±5                      | ±5                   | ±5                     | ±4 TBD              | ±3 TBD                 |
| CTE TSR<br>Mask Class A (ppb/K)            | 10                      | 6                       | 6                    | 5                      | 4                   | 3                      |
| Inclusions (> 1micron) #/cm3               | 0.02                    | 0.002                   | 0.002                | 0.002                  | 0.001               | 0                      |
| Inclusions<br>Mask Failure Predictions     | 1 in 25                 | 1 in 300                | 1 in 300             | 1 in 300               | 1 in 600            | None                   |
| Striae<br>(p-v Mpa)                        | ±1.00                   | ±0.20                   | ±0.10                | ±0.05                  | ±0.04 TBD           | ±0.04 TBD              |
| CTE Homogeneity Optics radial p-v (ppb/K)  | 10<br>ULE Premium Grade | 10<br>ULE Premium Grade | 8<br>ULE EUV Grade   | 5<br>ULE EUV Grade     | 5<br>ULE EUV Grade  | 5<br>ULE EUV Grade     |
| CTE Homogeneity Optics axial p-v (ppb/K)   | 16<br>ULE Premium Grade | 14<br>ULE Premium Grade | 10<br>ULE EUV Grade  | 9<br>ULE EUV Grade     | 8<br>ULE EUV Grade  | 6 TBD<br>ULE EUV Grade |
| CTE Crossover Optics (ppb/K)               | -                       | ±5                      | ±5                   | ±4                     | ±3                  | ±2 TBD                 |
| Birefringence (nm/cm)                      | 10<br>ULE Premium Grade | 10<br>ULE Premium Grade | 4<br>ULE EUV Grade   | <3<br>ULE EUV Grade    | <2<br>ULE EUV Grade | <1<br>ULE EUV Grade    |
| Index Homogeneity masks (ppm)              | -                       | _                       | 600<br>ULE EUV Grade | TBD                    | TBD                 | TBD                    |
| CTE Metrology ultrasonic Precision (100mm) | ±0.4 ppb/K              | Evaluate                | Specify<br>Equipment | ±0.2 ppb/K             | ±0.1 ppb/K          | ±0.1 ppb/K             |
| CTE Metrology Index Homogeneity            |                         |                         | Evaluate             | ±0.1 ppb/K             | ±0.1 ppb/K          | ±0.05 ppb/h            |
| CTE Metrology Microprobe Precision         | ±2 ppb/K                | ±2 ppb/K                | ±2 ppb/K             | ±2 ppb/K               | ±2 ppb/K            | ±2 ppb/K               |
| CTE Metrology  XRF Precision               | ±2 ppb/K                | ±2 ppb/K                | ±2 ppb/K             | ±2 ppb/K               | ±2 ppb/K            | ±2 ppb/K               |
| CTE Metrology  Absolute                    |                         | Evaluate                | Design and Build     | Debug and<br>Correlate | Quality control     | Operationa studies     |

## **Summary and Conclusions:**

EUVL grade ULE Glass is an appropriate material for EUV applications. A roadmap for glass quality and metrology improvements is being pursued. Striae effect on surface roughness has been investigated and the impact reduced. This was accomplished by characterizing the striae, developing the proper metrology tools and improving the forming process. Future work will focus on improving the low frequency CTE homogeneity within ULE and the development of appropriate metrology tools.