Use of an Application Programming Interface (API) to allow non-optical designers to perform specific optical evaluations

Mark C. Sanson

Corning Tropel Corporation, 60 O'Connor Road, Fairport, New York 14450 SansonMC@corning.com

Abstract: A person lacking training in optical design programs may perform tasks using the design program's power. This paper addresses how API, with Windows Component Object Model, allows a person lacking understanding of the operation of the design program to run optical sensitivity routines.

1. Introduction

Commercial optical design programs available today contain hundreds if not thousands of command and analysis options for an optical designer. To run these programs effectively requires not only training, but a fair amount of experience with the software package. However, a person with an understanding of optics, but no training in the use of such programs, may benefit from the use of some of these tools for select tasks. This paper discusses the use of an Application Programming Interface (API) with one of the commercial optical design programs, ORA's Code V[1]. CODEV has designed into its software the ability for Microsoft Windows applications to access some of the tools of the optical design program through Microsoft Windows Component Object Model (COM)[2]. This allows applications like Excel and C++ to drive CODEV.

This paper discusses capabilities the COM interface can bring to optical design programs, and it covers an example of using Excel to run CODEV. API is not new, but more recently the optical design programs make better use of it. A large amount of the power of CODEV is available through the COM ORA has developed. By creating a simple interface with another Windows application, an optical designer can develop a program which allows someone untrained in the use of the optical design software to perform a specific task. This allows the time of the optical design rogram. In addition to using the Windows program as the interface, the person can utilize the built in capabilities of the Windows application. The use of Excel to run a sensitivity routine and create charts and tables of the different sensitivities provides an example of this advantage.

2. API and COM

With the use of Microsoft Windows COM, the API that is built into the CODEV optical design program allows another application to start CODEV and run certain commands. The COM allows a client/server relationship to be established where the optical design program is the server (Fig. 1) and the client can be any software using COM, such as Microsoft Excel with Visual Basic for Applications (VBA), MATLAB, or C++. The client can issue several general and standard analysis commands that have been developed in CODEV.

The user can utilize the client program's benefits in conjunction with the power of the optical design program. This feature allows custom user interfaces, graphing of data, statistical analysis, and ease of use for repetitive design tasks. The full capabilities of the design program are available, but COM does not allow the passage of graphics to the client program.

International Optical Design Conference 2006, edited by G. Groot Gregory, Joseph M. Howard, R. John Koshel, SPIE Vol. 6342, 634205, © 2006 SPIE-OSA · 0277-786X/06/\$15 · doi: 10.1117/12.692191

SPIE-OSA/ Vol. 6342 634205-1

Fig. 1. Client/server relationship with CODEV's COM

3. Sensitivity Application in Excel

In an optical design program, it is fairly straightforward to gather information on manufacturing sensitivities. Often this data is taken to an application like Excel to graph relevant data. Observing a graph of the sensitivities may ease identification of sensitive parts of the lens for different types of perturbations and aberrations. Any time this sensitivity analysis is re-computed, there is time involved with moving the data into Excel again and possibly reworking some of the charts. This work must be done by someone trained in the use of the design program as well as Excel. This additional work is the motivation to use Excel, the end program, as the interface for a sensitivity analysis. With the development of the Excel interface the user can run CODEV without the design program being seen, and the sensitivity can be rerun without needing to manually import the data to Excel.

Using Excel's Visual Basic for Applications, an session of CODEV can be started, but it will remain hidden from the user. The COM allows certain functions to be run with the design program. These functions allow the user to analyze ray trace data, MTF data, wavefront data, Zernike data, etc. However the full benefit of the optical design program is the ability to enter any command that would normally be entered in the programs command line. Creating the visual basic code that issues the commands to CODEV that the trained user would know allows an individual not proficient in CODEV to run the program. Instead of issuing a command by typing "eva (zfrcoef(2,1,1,9,80,25, 'EXS'))", the operator of Excel can press a simple button with code linked to it.

List Zernike #9

Private Sub Button_Click() astring = "(zfrcoef(2,1,1,9,80,25,'EXS'))" strResult = session.EvaluateExpression(astring) Range("Zernike #9").Value = CDbl(strResult) End Sub

Fig. 2. Sample Command Button and VBA code behind it to allow Zernike #9 to be listed

The button and underlying code shown in fig. 2 would calculate Zernike #9 and the value would then be placed in a named cell on the worksheet.

The sample Excel workbook contains several worksheets. One worksheet allows the lens to be loaded and listed (fig. 3), two worksheets allow the user to choose which symmetric and asymmetric perturbations to run, and finally two worksheets list the results of the perturbations in a table and create several charts. A simple interface on the first worksheet allows the user to load the lens to have a sensitivity routine performed on it. Buttons contain the code that will allow commands to be sent to the server optical program and/or information to be gathered from the server optical program. After loading the lens, the user has the ability to list the lens with VBA code automatically formatting the prescription. Different tasks can be arranged in different workbooks, as has been done in the

sensitivity example. The symmetric perturbations (radii, thickness, indices, etc.) are on one sheet and the asymmetric perturbations (decenters, tilts, etc.) are on another. The user does not need to know any CODEV commands to be able to run the basic sensitivities. The application automatically generates tables and charts of the different perturbations.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41											
Path C:\CVUSER\COM_Work\Sensitivities Filename thickpoly_4f.seq Start CodeV Stop CodeV Load Lensfie Stop CodeV Load Lensfie Stop CodeV Load Lensfie Stop CodeV Lens Listing Image: Code Code Code Code Code Code Code Code	A	В	С	D	E	F	G	Н	I	J	K	
Filename C:\CVUSER\COM_Work\Sensitivities Filename thickpoly_4f.seq Start CodeV Stop CodeV Load Lensfile Stop CodeV Load Lensfile Material Surface Label Radius Thickness Surface Label Radius Thickness Material Semi-CA O INF INF INF INF INF 1 el_1r1 42.8824 2.5000 PBM11 4.2993 2 el_1r1 13.2831 9.3005 5.8349 Else 6 150.0000 6.2163 7.6396 Else Else 7 el_4r1 50.1244 2.5000 SBM15 9.3956 Else 8 el_4r2 27.2428 3.5000 SBM15 9.3956 Else 9 el_5r2 -115.000 SLL10 9.6711 Else 10 el_6r1 90.5935 1.5000 SLL10 9.7370 Else 11			- 41-									
Filename thickpoly_4f.seq Start CodeV Stop CodeV Load Lens file Stop CodeV Lens Listing Semi-CA Title: Objective Surface Label Radius Thickness Material Semi-CA 0 INF INF 1 el_1r1 42.8824 2.5000 PBM11 4.2993 2 el_1r1 42.8824 2.5000 PBM11 4.2993 3 el_2r1 13.8826 2.0000 PBL21 5.9421 5 el_3r1 15.9000 6.2163 7.6396 2.000 7 el_4r1 50.1244 2.5000 SBSM15 9.39356 8 el_4r2 27.2428 3.5000 SBAH32 9.9455 9 el_5r2 112.3422 2.4001 9.6594 2.4001 10 el_6r1 19.05935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52		P	ath	C:\0	CVUSER\CO	DM_Work\Se	ensitivities					
Start CodeV Stop CodeV Load Lensfile Stop CodeV Lens Listing Image: Control of the state of t		Filo	namo	4h:a1	lonali Afra	_						
Start CodeV Stop C		File	name	thici	kpoly_41.sec	1						
Start CodeV Stop CodeV Load Lensfile			-		-							
Load Lensile Load Lensile Title: Objective Control of the second s		Start	CodeV	Stop CodeV								
Load Lensfile Lens Listing Title: Objective Surface Label Radius Thickness Material Semi-CA 0 INF 1 el_1r1 42.8824 2.5000 2 el_1r2 -33.4511 1.5000 3 el_2r2 11.7029 15.2810 4 el_3r1 18.9826 2.0000 9 el_3r2 15.0000 6.2163 7 el_4r1 50.1244 2.5000 SBM15 9.3956 8 el_4r2 27.2428 3.5000 SBM15 9.3956 9 el_5r2 -112.3422 2.4021 9 el_6r1 90.5935 1.5000 SIL10 9.7370 11 el_6r2 19 el_6r1 90.5935 1.5000 SIL10 9.7370 <												
Lens Listing Internation Material Semi-CA Internation Internat Internat Inter		Load	Lensfile									
Lens Listing Digetive Image: Constraint of the second sec												
Title: Objective Naterial Semi-CA 0 INF INF INF 0 INF INF INF 1 el_1r1 42.8824 2.5000 PBM11 4.2993 2 el_1r2 -33.4511 1.5000 BAL15 4.2013 3 el_2r2 11.7029 15.2810 4.0608 4.0608 4 el_3r1 18.9826 2.0000 PBL21 5.9421 5 el_3r2 13.2831 9.3053 5.8349 4.0608 6 150.0000 6.2163 7.6396 4.0608 4.0608 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 4.0608 4.0608 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 4.0608 9 el_5r2 -112.3422 2.4021 9.6594 4.0608 10 el_6r1 90.5935 1.5000 <td></td> <td>Lens</td> <td>Listing</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Lens	Listing									
Title: Objective Inickness Material Semi-CA Image: CA Image: CA <thimage: ca<="" th=""> <thimage< td=""><td></td><td></td><td>Listing</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage<></thimage:>			Listing									
Surface Label Radius Thickness Material Semi-CA 0 INF INF INF INF INF INF 1 el_1r1 42.8824 2.5000 PBM11 4.2993 INF INF 2 el_1r2 -33.4511 1.5000 BAL15 4.2013 INF INF INF 3 el_2r2 11.7029 15.2810 4.0608 INF		Title:	Objective									
0 INF INF INF INF 1 el_1r1 42.8824 2.5000 PBM11 4.2993 2 el_1r2 -33.4511 1.5000 BAL15 4.2013 3 el_2r2 117.029 15.2810 4.0608 4 el_3r1 18.9826 2.0000 PBL21 5.9421 5 el_3r2 13.2831 9.3053 5.8349 5.8349 6 150.0000 6.2163 7.6396 7.6396 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 13 el_8r1 INF <t< td=""><td></td><td>Surface</td><td>Label</td><td>Radius</td><td>Thickness</td><td>Material</td><td>Semi-CA</td><td></td><td></td><td></td><td></td><td></td></t<>		Surface	Label	Radius	Thickness	Material	Semi-CA					
1 e_1rr 42.8824 2.5000 PBM11 4.2993 2 e_1r2 -33.4511 1.5000 BAL15 4.2013 3 el_2r2 11.7029 15.2810 4.0608 4 el_3r1 18.9826 2.0000 PBL21 5.9421 5 el_3r2 13.2831 9.3053 5.8349 6 150.0000 6.2163 7.6396 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 1 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		0		INF	INF	DD1444	INF					
2 el_1r2 33.4511 1.5000 BAL15 4.2013 3 el_2r2 11.7029 15.2810 4.0608 4 el_3r1 18.9826 2.0000 PBL21 5.9421 5 el_3r2 13.2831 9.3053 5.8349		1	el_1r1	42.8824	2.5000	PBM11	4.2993					
3 el_2/2 11.7029 15.2010 4.0008 4 el_3r1 18.9826 2.0000 PBL21 5.9421 5 el_3r2 13.2831 9.3053 5.8549 6 6 150.0000 6.2163 7.6396 6 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		2	el_1r2	-33.4511	1.5000	BALIS	4.2013					
4 el_311 18.8020 2.0000 PBL21 3.9421 5 el_312 13.2831 9.3053 5.8349 6 150.0000 6.2163 7.6396 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		3	el_2r2	19,0926	2 0000		4.0608					
6 150.0000 6.263 7.6396 7 el_4r1 50.1244 2.5000 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el_8r2 15.2236 5.0000 SF10 8.8093			el_3r2	13 2831	9 3053	FDL21	5.83/19					
7 el_4r1 150.1244 2.500 SBSM15 9.3956 8 el_4r2 27.2428 3.5000 SBAH32 9.5945 9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el_8r2 15.2236 5.0000 SF10 8.8093		6	ei_512	150,0000	6 2163		7 6396					-
1 0 11 1 0 11 1 10 0 10 10 10 11 12 12 12 12 12 12 12 12 12 12 12 10		7	el 4r1	50 1244	2 5000	SBSM15	9 3956					
9 el_5r2 -112.3422 2.4021 9.6594 10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		8	el 4r2	27.2428	3.5000	SBAH32	9.5945					
10 el_6r1 90.5935 1.5000 SLAL10 9.7370 11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		9	el 5r2	-112.3422	2.4021		9.6594					
11 el_6r2 19.6326 5.5000 SFPL52 9.6433 12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		10	el_6r1	90.5935	1.5000	SLAL10	9.7370					
12 el_7r2 -23.5035 0.2499 9.6711 13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		11	el_6r2	19.6326	5.5000	SFPL52	9.6433					
13 el_8r1 INF 1.5000 ADF10 9.2691 14 el 8r2 15.2236 5.0000 SF10 8.8093		12	el_7r2	-23.5035	0.2499		9.6711					
14 el 8r2 15.2236 5.0000 SF10 8.8093		13	el_8r1	INF	1.5000	ADF10	9.2691					
		14	el_8r2	15.2236	5.0000	SF10	8.8093					
	A Taba	16	1_10r1,	22 /701,	1 5000		8 2002					

Fig. 3. Sample screen shot displaying the simple interface

The desired sensitivities and evaluators are selected by the user with check boxes (fig 4). Each perturbation is individually performed, and the change in performance criteria is computed. The type of perturbations and performance criteria available to the user has been pre-determined, and coded into the sensitivity routine. The content is based upon advice from the optical designer. Writing the code for all necessary options allows the user to realize the maximum benefit from the program in terms of the number and diversity of systems for which the user may utilize the program.

📧 Mic	rosof	ft Excel -	Sensitivities_Ver1	p7.xls	_					_			٩X
:펜 8 : D 0	le E	idit ⊻iew	Insert Format	Tools <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp	0	ਙ_ (\$\$) A Z	104		1 - 1	Ту	pe a question for help 🔍	đΧ
	2 120 13 190			no una una • ∨ ha ne⊇ ♥v∂ Reply	with Changes E	න End	Z • 12 Z + A + .	LLL 4/9 130 % + (: V G Security		E		
Arial			• 10 • B <i>I</i>		·a: \$ % ,	*	8 49 F F F	• 🗠 • <u>A</u> • 🛃	2 m Q M B =		• • • A 🛛 🖄 👷		
E	46	•	fx		_	_	_						
		В	C	D	E		F	G	Н		J	K	^
2 3		E	valuato	rs		_	Perturb	ations	Amount		Compensation		
4 5		RMS	Error (waves)		F	Element Th	ickness	0.100		Refocus		
6 7	~	3rd S	iph (Z9 waves	\$)			– Airspace Tr	nickness			By File		
8 9		5th S	iph (Z16 wave	es)			(mm)		0.100		Filename	SymmComp.se	q
10 11		Coma	a (Z8 waves)			Г	Element Sh	nift (mm)	0.100		Compensate Nomin	al Lens	
12 13		Astig	(Z5 waves)	_			d Inday				Check + & - Toleran	ces	
14 15		Dst (CodeV 3rd)				* Index		0.0002				=
16	InDist (max deviation)			F	Power (Frin	ges)	10		Run Sensitivities				
18	Srd Order Dist (um)				ļ	Group Shift	c (list bolaw)						
20		Telec	entricity (°)			1			0				
22	-	Later	al Color (um)		4.1	\ _	Surrace #1	Surface #2	Amount 0 1				
23 24 25		Axial	Color (um)		2)) e) e	el_6r1	el_312 el_8r2	0.1				
26 27		Scale	e Factor / EF	L	4)	,))							
28 29		Imag	e Clearance		6) 7)))							
30 31					8) Q))							~
	• H \	Intro / S	heet1) Symm Ser	nsitivities Input	: / Symm Sensiti	Ivitie	es 🗶 Asymm Sensiti	wities Input 🔏 Asy	mm Sensitivities 🛛 <				>]

Fig. 4 Sample screen shot displaying the symmetric perturbation worksheet

The optical design program performs all of the perturbations and analysis behind the scenes. The session of the optical design program that is run does not appear on the desktop. The design program then sends the sensitivity data back to the client program. Excel formats and lists the data (Fig. 5). Then individual graphs for each perturbation type are automatically generated (Fig. 6). The graphs can be enhanced with VBA by adding the perturbation type and amount. Repetitive tasks are done automatically with VBA, such as formatting the decimal precision, underlining headings, graphing, and highlighting. With some extra VBA programming the customization of the charts can occur and be unique based upon data supplied from the optical design program.

🖾 Mia	crosoft Excel - Se	ensitivities_Ver1p7.xls									_ FX
:e) :	<u>E</u> ile <u>E</u> dit ⊻iew	Insert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata	<u>W</u> indow <u>H</u> elp						Туре	a question for hel	• - ₽×
	27 H B A I 6	3 Q ** K X D B	- ∛ ") - (" - 🛞 Σ - 🗒 ሏ↓	X 🕼 🐗 150% 🔹 🛞 💂	Secur	ity 🔊 決 🖳 4	0 -				
	1126×	1051 2 51014	Reply with Changes End Review								
Arial	•	10 • B I <u>U</u> E	『■ 函 \$ % , *8 % 課 律	I <u></u> . <u>.</u>	्र 🖂 🖬		🕈 🛢 A 🖾 🛛	况 🕫			
	A1 -	A New lens from CVMA	CRO:cvnewlens.seq		-	-					
	A	В	<u> </u>	D	E	F	G	1	1		<u>_</u>
1	INEW IERS 1		/newiens.seq								
2		4 - 1 O		T	0	70 (-				=
3		1st Surface Num.	Element/Surface Range	Туре	Amount	29 (waves)	_				
4		nominal	lens		0.4	-0.0027	_				
5		1	El 1	Element Thickness	0.1	-0.0012	_				
6		2	EI 2	Element Thickness	0.1	-0.0015	-				
1		4	El 3	Element Thickness	0.1	0.0058	0.0	0500]			
8		1	El 4	Element Thickness	0.1	0.0339	_				
9		8	EI 5	Element Thickness	0.1	0.0227	0.0	0400 -			
10		10	EI 6	Element Thickness	0.1	-0.0075	_				
11		11	EI /	Element Thickness	0.1	0.0172	_				
12		13	EI 8	Element Thickness	0.1	0.0433	0.0	0300 -			
13		14	ELS	Element Thickness	0.1	-0.0020	_				
14		16	EI 10	Element Thickness	0.1	0.0272	- 0.0	0200 -			_
15		1/	EI 11	Element Thickness	0.1	-0.0261	/es				
16		19	EI 12	Element Thickness	0.1	0.0190	- A				
17		1	El 1	Index	0.0002	-0.0009	2 0.0	0100 -			
18		2	EI 2	Index	0.0002	0.0014	ē				
19		4	EI 3	Index	0.0002	-0.0028	ան ը,լ	0000 -		╌┏┓╌╷┖	
20		7	El 4	Index	0.0002	-0.0108	_		EI 1	EI2 E	13 EL-
21		8	EI 5	Index	0.0002	0.0239		0100 I			
22		10	El 6	Index	0.0002	-0.0267	-0.0	0100 -			
23		11	EI 7	Index	0.0002	0.0538	_				
24		13	El 8	Index	0.0002	-0.0152	-0.0	0200 -			
25		14	El 9	Index	0.0002	0.0158					
26		16	EI 10	Index	0.0002	-0.0037		0200			
27		17	El 11	Index	0.0002	0.0042	-0.0	0300 -			
28		19	El 12	Index	0.0002	0.0004					
29		1	el_1r1	Power	10	-0.0191					
30		2	el_1r2	Power	10	0.0012					~
Ready	► ► \ Intro / Shi	eet1 🗶 Symm Sensitivities Ir	put) Symm Sensitivities (Asymm	Sensitivities Input / Asymm Si	ensitivities 🛛 <	<u>]</u>				NU	2

Fig. 6 Sample graph that is automatically generated from sensitivity data

SPIE-OSA/ Vol. 6342 634205-5

4. Summary

The ability to use an optical design program as a server for other programs increases the number of people capable of performing optical routines. Secondary programs which support COM can be integrated with design code to perform repetitive specialized analysis routines, data collection, and graphical display of information. Some of these tasks may be tasks that the optical program cannot perform alone. The client program even may drive the optical program in its tasks, based upon analysis of data gathered from the program. A custom task-specific user interface allows all of these advantages. An API that performs an optical sensitivity analysis has been demonstrated.

5. References

- [1] CODEV is a registered trademark of Optical Research Associates
- [2] Windows is a registered trademark of Microsoft Corporation

SPIE-OSA/ Vol. 6342 634205-6