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Abstract. Lens design software has been designed primarily to model
conventional imaging systems. While interferometers do not generally
fall into this category, lens design software nonetheless is well suited for
analyzing a variety of aspects of interferometric systems. The general
requirements for a ray-based model of interferometers are discussed,
and a variety of examples are presented. The examples are designed to
demonstrate both the power and flexibility of the approach proposed
here for modeling interferometers. © 2000 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(00)01307-6]
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1 Introduction

Geometrical optics has been used successfully to de
conventional imaging systems for hundreds of years. Ho
ever, simple spot diagrams are insufficient for model
systems whose aberrations are small—the wave natur
light must be taken into account to accurately predict
behavior of systems as they approach the diffraction lim
A simple ray-based analysis does a good job of predic
the shape of wavefronts away from caustics, but the mo
breaks down near caustics. Since in an imaging sys
there is a caustic at the image plane, it is common to tr
rays only to estimate the shape of the wavefront in the
pupil. If quantities like the point spread function are d
sired, this wavefront is then propagated according to
laws of wave optics to the image plane.

Contrast this with interferometers. By their very natu
they rely explicitly on the wave nature of light for the
operation. However, in interferometers, caustics at the
tector are typically avoided. Therefore, for any given wav
front that is input into the interferometer, geometrical o
tics generally does a good job of predicting the outp
wavefront. And it is the path difference between wav
fronts that interferometers measure.

Despite the obvious utility of the relatively simple too
of geometrical optics for modeling interferometers, the
are studies in which the propagation of fields
considered.1,2 However, the bulk of the published work o
modeling interferometers centers on the geometric wa
front. Huang discusses propagation errors within an a
braic framework for Fizeau interferometry.3 A number of
papers describing numerical modeling of individual inte
ferometers have been published. For example, Michalo
et al. develop a method for modeling interferometers a
apply it to a grazing-incidence interferometer for testi
cylindrical parts.4 Lowman and Greivenkamp5,6 consider a
Twyman-Green interferometer for nonnull testing of a
pheres. In another paper, misalignments of optical ass
blies in an interferometer for astrometric measurement
studied.7 All of these papers use ray tracing to estima
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geometric wavefronts. An alternative approach that
volves tracing a large number of randomly chosen ra
through an interferometer has also been described.8

A general, geometric framework for modeling the op
cal performance of interferometers is described in this
per. This framework allows for modeling a variety of a
pects of interferometers. These include~but are not limited
to! ~i! the sensitivity of an interferometer to manufacturin
errors in its components;~ii ! the effects associated wit
aberrated input wavefronts;~iii ! the reduction in visibility
due to an extended source, a polychromatic source, or b
~iv! determining the range of amplitudes and spatial f
quencies over which an interferometer can make accu
measurements. This framework is applied to the testing
optical surfaces~interferometers that measure rough par
for example, are not modeled well with this approach* !.
Note that not all aspects of interferometer performance
be modeled with this simple geometric framework. For e
ample, if the viewing optics in an interferometer do n
image a part under test, say, onto the detector, thendefocus
fringes are observed at the edge of the part. In this ca
diffraction effects must be considered to predict the int
ference pattern seen at the detector.

The basic premise for the proposed approach is to mo
interferometers in the manner in which they are used. T
is discussed further in Sec. 2. Sections 3, 4, and 5 prima
consist of a variety of examples showing the ways in wh
this basic approach can be applied. The example of Se
involves a Twyman-Green interferometer. The measu
ment error associated with an aberrated input beam is m
eled, and a simulation of the measurement of a parab
surface is described. This same interferometer appear
examples presented in Sec. 4 and 5. In Sec. 4, a discus
of modeling extended sources is given, along with e
amples for a Michelson and for the Twyman-Green int
ferometer. In Sec. 5, a method to map out the useful m

*Rough partsare those with features on the surface with dimensions
the order of the wavelength.
.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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Bryan D. Stone: Modeling interferometers with lens design software
surement range of an interferometer is described@this
covers item~iv! in the above list#. Concluding remarks are
offered in Sec. 6.

2 Basic Approach

2.1 General Description

Consider the Tyman-Green interferometer shown schem
cally in Fig. 1. An input beam is incident on a beamsplitt
which sends the light into the two arms of the interfero
eter. The reference arm is shown with a plane return mir
The test arm has a feed lens to generate spherical w
fronts. The detector is placed conjugate to the part un
test~viewing optics can be added between the beamspl
and the detector to image the test part onto the detecto!. If
a plane wave enters the system and all elements are
~both in design and manufacture!, then a plane wave exit
each arm of the interferometer. In practice, however, no
ing is perfect, and there are a variety of effects that o
might want to model: aberrated input wavefronts, extend
sources, polychromatic sources, aberrations inherent in
design of the feed or viewing optics, and manufactur
errors or misalignments of elements in the interferomet

By developing an approach that matches, as closel
possible, the conditions under which the interferomete
used, it is possible to model all these effects. To underst
this approach, consider Fig. 2, where the two arms of
interferometer are shown separately. A wavefront~not nec-
essarily plane! is input into the system, and a particul
point on the detector is labeledA. Now consider a ray
through the test arm that~i! is normal to the wavefront and
~ii ! passes through the pointA on the detector. This ray
intersects the wavefront at the point labeledB. A similar
ray through the reference arm~that passes throughA and is
normal to the input wavefront! also is shown. The poin
where this ray intersects the wavefront is labeledC. At the
point A, the interferometer measures the optical path diff
ence ~OPD! between the raysBA and CA. The OPD is
obtained by measuring the relative phase between the
interfering wavefronts atA and then unwrapping that phas
There are a variety of methods for measuring abso
phase and performing the phase unwrapping. While
choices made for these methods affect the interferome
performance, the focus of this paper is on modeling
effects of the optics on interferometer performance. The
fore, the assumption is made that phase detection and
wrapping are performed perfectly.

Based on the above discussion, if lens design softwa
used to model the interferometer, the software must be

Fig. 1 A schematic of a simple Twyman-Green interferometer.
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to determine the ray that is normal to any given input wa
front and passes through any given point on the detec
This process I callray aiming, because it is related to th
ray aiming that commonly takes place in lens design s
ware when determining the initial direction of a ray, sa
that starts at a given object point and passes throug
given point in the exit pupil. Proper ray aiming is critica
for the ultimate success of the approach taken here,
some considerations for performing such ray aiming
discussed in the next subsection.

Before presenting that discussion, a few thoughts
given on the advantages of this procedure. Since it is
interference between wavefronts that gives informat
about the OPD between arms of an interferometer,
could argue that the step of ray aiming is not essent
Instead, rays normal to the input wavefront can be launc
from, say, points on a regular grid across the wavefro
Once these rays are traced to the detector, the wavefr
for the different arms of the interferometer can be fitted a
then subtracted. However, this procedure is not always
clean as it sounds. Some of the issues~which are discussed
first! relate to the operation of current lens design softwa
but others are more fundamental. If one wants to u
built-in features of lens design software, this typically lim
its the input wavefronts to planes and spheres. In fitt
wavefronts, Zernike polynomials are typically used. Ho
ever, if the part does not have a circular clear apertu
Zernike polynomials are not the best choice of fitting fun
tions: a set of functions that are orthogonal over the ap
ture shape is required. Further, mapping errors between
wavefronts from different arms have to be allowed f
separately. In general, fitting the output wavefronts is
process fraught with pitfalls, and the user must always
on the lookout for poor fits.

Fig. 2 (a) The test arm and (b) the reference arm in a Twyman-
Green interferometer. A ray through each arm of the interferometer
is shown that (i) passes through a given point on the detector (la-
beled A) and (ii) is normal to the input wavefront.
1749Optical Engineering, Vol. 39 No. 7, July 2000
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Bryan D. Stone: Modeling interferometers with lens design software
The problems listed above could be considered m
inconveniences—they can all be overcome in one way
another. However, there is a more fundamental reaso
avoid the above procedure: when modeling the limits to
performance of an interferometer~as is done in Sec. 5!,
fitting is inadequate. For example, the ray aiming that
used here sometimes fails. This can occur for large asph
departures with a nonnull test, for example, or when hi
spatial-frequency errors are placed on parts, as is don
Sec. 5. However, if a robust ray-aiming procedure is us
these failures provide useful information. Failures of t
ray-aiming algorithm signal that a caustic of the associa
wavefront has moved onto the detector. When this occ
the measurement that is made is not simply related to
surface figure of the part under test. Any robust mode
interferometer performance should be vigilant for such
currences and alert the user to them. If a grid of ra
through the input wavefront is sent into the system and
optical path of the output rays is used to fit a wavefront,
result is meaningless once a caustic has moved onto
detector. However, one might never know that this has
curred.

The only drawback of the method proposed here is t
it is iterative, and therefore has the potential to be slo
However, such an iterative procedure is not fundament
different ~and no more costly! from determining the initial
direction of a ray on the object that passes through a gi
point on the exit pupil. Computers are fast, and tracing
extra rays is generally of little consequence these days.
advantage is that this method provides a general framew
for analyzing a variety of interferometers. By incorporati
the ray aiming with conventional lens design software, a
component that can be included in a conventional imag
system can be included in an interferometer model. T
includes gratings, diffractive elements, gradient-index e
ments, aspheres, etc. In the next subsection, some thou
on ray aiming are given.

2.2 Considerations for Ray Aiming

There are two properties that are important for any r
aiming procedure: it must be robust, and it must conve
quickly. In assessing the tradeoffs between these two
quirements, it is generally desirable to sacrifice speed
the sake of robustness. For quick convergence, I use
Newton-Raphson method~see, e.g., Ref. 9!, which is de-
scribed briefly as follows. Place a Cartesian coordinate s
tem at the detector and one at the input wavefront. Qua
ties associated with the detector’s coordinate system
distinguished by the addition of a prime, and the axes
chosen such that theX8 andY8 coordinates of a point cor
respond to transverse positions on the detector. The c
dinate system associated with the input wavefront is si
larly aligned so that theX and Y coordinates uniquely
identify a point on the wavefront. Given a point of intere
on the detector with coordinates (x̄8,ȳ8), the goal is to
determine the position on the input wavefront for the r
that ~i! starts normal to the wavefront and~ii ! passes
through the point of interest on the detector. Given so
guess for this initial position@call the coordinates of this
guess (x0 ,y0)#, the coordinates of the ray from this point
the detector can be determined@call them (x08 ,y08)#. Then
1750 Optical Engineering, Vol. 39 No. 7, July 2000
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according to the Newton-Raphson method, an ‘‘improv
estimate’’ for the desired position on the input wavefro
(x1 ,y1) say, is given by

S x1

y1
D5S x0

y0
D1F ]x08/]x0 ]x08/]y0

]y08/]x0 ]y08/]y0
G21S x̄82x08

ȳ82y08
D , ~1!

where the derivatives represent the changes in ray pos
at the detector with respect to changes in ray position
the wavefront.~These derivatives must take into accou
the change in initial ray direction for non-plane-wave i
puts.!

This method, on its own, fails the robustness requi
ment~see, e.g., Ref. 10!. If, for example, the initial guess is
not close enough to the actual point on the wavefront,
‘‘improved estimate’’ may actually be worse than the orig
nal estimate. To allow for such a possibility, the meth
can be supplemented with a check of whether the s
specified by Eq.~1! ~in the second term on the right! gives
a point further from the desired point on the detector th
the initial guess did. If it does, a smaller step can
searched for that gives an output ray closer to the spec
point on the detector.~The method I use for this is simila
to the one described in Sec. 9.7 of the book cited in Ref.!

Another way this method can fail is that the outp
points can oscillate around the desired point, converg
only slowly. To fix this problem, an estimate of the rate
convergence can be determined from one iteration to
next. If the convergence after a few iterations is too slow
smaller step that gives an output ray that is closer to
specified point on the detector can be searched for.

Finally, a means to determine the initial estimate
needed. Since the coordinates of points at the detector
to be approximately linearly related to the coordinates
points at the input, taking the initial ray to start at the ax
point on the wavefront works well. However, in cases
unconventional geometries,† more specialized methods fo
finding initial estimates may be needed.

The process described above is very robust, and I h
found that it fails only in cases where there is a caustic
the detector.

3 A Basic Twyman-Green Interferometer

3.1 Example 1: Measuring a Sphere

For this example, a Twyman-Green interferometer used
test a spherical part is modeled. The interferometer is ill
trated schematically in Fig. 3. The input beam is incide
on a cube beamsplitter. A feed lens and the part under
constitute the test arm, and a plane mirror the refere
arm. Viewing optics~in the form of an afocal pair! have
been placed between the beamsplitter and the detector.
pair images the part under test onto the detector. The
scriptions for the feed lens and viewing optics are given
an appendix. The part under test is taken to have a 100-
radius of curvature and a 50-mm clear aperture. The ce

†An embodiment of an interferometer that I consider possesses uncon
tional geometry is the CylinderMaster™. This interferometer is desig
to measure cylindrical parts at near-grazing incidence. CylinderMaste
a trademark of Tropel Corporation, Fairport, NY.
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Bryan D. Stone: Modeling interferometers with lens design software
of curvature of the part is placed at the rear focal point
the feed lens.~The separation from the last surface of t
feed to the rear focal point is given in the last row of Tab
1 in the appendix.! The input beam diameter that fills th
clear aperture of the part is 4.0 mm. The measurem
wavelength in all examples presented here is that of a H
laser~0.6328mm!.

For the first example, consider the measurement o
perfect spherical part. The points of interest are equ
spaced along a line through the center of the detector.
each point, the initial position of two rays~one through the
test arm and the other through the reference! are deter-
mined. These rays~i! pass through the point on the detect
and ~ii ! are normal to the~in this case plane! input wave-
front. Note that because of the nature of interferomet
any constant can be added to the OPD between the
arms. This constant is chosen such that the measured
between the rays at the center of the part under test is z
The resultant OPD is plotted in Fig. 4. The measured O
is simply twice the wavefront error of the feed lens~twice
because the feed lens is double-passed!. When high accu-
racy is desired, the OPD shown in Fig. 4 can be subtrac
from any measurements~i.e., it can be calibrated out!.

Now consider adding half a wave of third-order sphe
cal aberration to the input beam. The measurement tha
interferometer gives for various separations between
beamsplitter cube endface and the reference mirror is
termined according to the model, and the measured O

Fig. 3 Illustration of the Twyman-Green interferometer appearing in
examples in Secs. 3, 4, and 5.

Fig. 4 Measured OPD (in waves) as a function of position on the
part for the Twyman-Green interferometer illustrated in Fig. 3.
Downloaded from SPIE Digital Library on 06 Jan 201
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for a plane wave input is subtracted from this. The resul
plotted in Fig. 5 for five different locations of the referenc
mirror. When the reference mirror is placed 43.81 mm fro
the beamsplitter, it is imaged by the viewing optics onto t
detector. Since the surface under test is also conjugat
the detector, the effect of an aberrated input beam is ne
gible for this position of the reference mirror. However, t
propagation effects as the reference mirror is moved aw
from this position become noticeable. At a distance
163.25 mm, the two arms have approximately equal opt
paths along the axis~this condition needs to be satisfied, fo
example, when a temporally incoherent source is used!. In
this case, the difference between the measured OPD an
OPD found with a plane-wave input is about 0.05 waves
the edge of the part.

3.2 Example 2: Measuring a Paraboloid

The Twyman-Green interferometer is now used to meas
a paraboloid with the same base radius of curvature as
sphere from the previous subsection.@A paraboloid with a
clear aperture of 50 mm and a base radius of 100 mm
about 0.05 mm~or 80 waves at HeNe! of departure from
the sphere with the same base radius.# The input wavefront
is taken to be plane. In this case, I focus solely on
propagation errors in the system, and therefore again s
tract the OPD due to the feed lens from the OPD of
measurement. Say the part is positioned precisely 100
from the focus of the feed. Then as one moves out on
part, the test gets further from null, and the measurem
error increases. This is shown in Fig. 6 as the curve labe
0.0 mm. The other curves in Fig. 6 represent the meas
ment error as the part is shifted axially away from the foc
of the feed lens. The label of each curve shows how far
base center of curvature of the part has moved from
focus of the feed lens. When the part is shifted, it can
measured well in two zones: one near the axis and ano

Fig. 5 This figure shows the change in measured OPD when the
input beam possesses 0.5 waves of third-order spherical aberration.
The different curves are for different positions of the reference mir-
ror.
1751Optical Engineering, Vol. 39 No. 7, July 2000
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Bryan D. Stone: Modeling interferometers with lens design software
near a null of constant radius. As the part moves away fr
the feed, the radius of the second null zone moves ou
the part, and the regions~both near the axis and in th
second null zone! over which the interferometer gives goo
data get narrower. This model can determine the size
number of zones required for accurate subaperture st
ing. Of course, the fringe densities~which get higher away
from the null! also have to be taken into account for dete
tors with discrete pixels.

4 Extended Sources

4.1 Discussion

The approach taken here allows for straightforward mod
ing of the effects of extended sources. Extended sou
tend to decrease fringe visibility. To model this effect,
extended source is approximated by a series of disc
sources that add incoherently. Each discrete source ge
ates an independent input wavefront. Consider the irra
anceI at a point on the detector resulting from these d
crete wavefronts. In a two-beam interferometer~such as a
Fizeau or Twyman-Green!, the irradiance is given by

I ~wz!5(
i 51

N

wiF11v i cosS 2p

l
d i1wzD G , ~2!

whereN is the number of discrete sources,d i is the OPD
~associated with the point on the detector! for wavefronti,
v i is the visibility associated with sourcei alone,wi is a
weighting for the different input wavefronts, andwz is a
phase term. Aswz is varied from 0 to 2p, the irradiance
goes through its maximum and minimum values. Phy
cally, this phase shift can be thought of as resulting from
axial shift of a reference mirror~in a Twyman-Green inter-
ferometer, say! or of the part~in a Fizeau interferometer
say!. Eachv i must be between zero and one~thev i are less
than unity, for example, when different amounts of ene
exit the source and reference arms!.

Fig. 6 A logarithmic plot of the measurement error as a function of
radial position on the part under test. The different curves are for
various positions of the part. The label associated with each curve
shows the amount the center of curvature of the part is shifted from
the focus of the feed lens.
1752 Optical Engineering, Vol. 39 No. 7, July 2000

Downloaded from SPIE Digital Library on 06 Jan 201
-

s

e
r-

As an aside, there are a variety of reasons for thewi not
to be equal. For example, thewi can be adjusted for an
uneven energy distribution across the source~so that each
input wavefront gets a different weighting according to
energy!. As another example, Eq.~2! represents a discret
approximation to a continuous integral. Different schem
for numerical integration, such as Gaussian quadrature,‡ re-
quire different weightings to achieve the highest accura
from the numerical approximation. Therefore, even for
uniform source, thewi are not necessarily equal.

Equation~2! is now put into a form that makes it obvi
ous how the framework introduced earlier is used to mo
extended sources. Begin by rewriting it as

I ~wz!5(
i 51

N

wi1coswz F(
i 51

N

wiv i cosS 2p

l
d i D G

2sinwz F(
i 51

N

wiv i sinS 2p

l
d i D G . ~3!

The visibility ~denoted byV! is defined as

V5
I max2I min

I max1I min
, ~4!

where I max is the maximum value of the irradiance aswz

varies, andI min the minimum value. Letwz,max and wz,min

be the values ofwz that maximize and minimizeI, respec-
tively. These are found by differentiating Eq.~3! with re-
spect towz and setting the result equal to zero:

wz,max5tan21F (
i 51

N

wiv i sinS 2p

l
d i D

(
i 51

N

wiv i cosS 2p

l
d i D G , ~5!

wz,min5wz,min1p. ~6!

Equations~3!, ~4!, ~5!, and~6! can be combined to give th
following expression for the visibility:

V5

H F(
i 51

N

wiv i sinS 2p

l
d i D G 2

1F(
i 51

N

wiv i cosS 2p

l
d i D G 2J 1/2

(
i 51

N

wiv i

.
~7!

While Eq. ~7! can be manipulated further,§ this form is
ideal for numerical implementation. For each point on t
source~i.e., for each input wavefront!, the OPD between

‡For example, the quadrature schemes discussed in Ref. 11 can be u
obtain the most accuracy with the fewest input wavefronts.

§For example, Eq.~7! is equivalent to the following equation:

V5

HF(
i51

N

~wivi!
2G12(

i51

N

(
j5i11

N

wiwjvivj cosF2p

l
~di2dj!GJ1/2

(
i51

N

wivi

.
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Bryan D. Stone: Modeling interferometers with lens design software
the arms of the interferometer is determined~i.e., thed i are
found!. Running totals are kept of the individual sums a
pearing in Eq.~7!. Once the sums have been computed, i
straightforward to determine the visibility according to E
~7!.

4.2 Example 1: Michelson Interferometer

As an example, consider a Michelson interferometer.
illustrated in Fig. 7, the two arms of the interferometer a
taken to have different lengths. The source for this exam
has a uniform energy distribution, and the visibility at
single point on the detector is modeled. Since there are
arms to consider for each input wavefront, there are f
rays of interest for the two wavefronts shown in Fig.
These rays are shown individually in Fig. 8. The OPD
wavefront 1~call this d1! is the difference between path
BCK @Fig. 8~a!# andBDK @Fig. 8~b!#. For wavefront 2,d2
is the difference between the pathsEFGK @Fig. 8~c!# and
HIJK @Fig. 8~d!#. The values of the OPD for any othe
wavefronts of interest can be found similarly. These
used in Eq.~7! to determine the fringe visibility.

Before proceeding with the results of this example,
exact visibility is discussed for this case. This allows
comparison between the model and exact results. Cons
a plane wavefront propagating roughly in theZ direction.
Say thex andy direction cosines of the direction of propa
gation area andb ~which are assumed small!. If this wave-
front is input into a Michelson interferometer whose~un-

Fig. 7 A schematic illustration of a Michelson interferometer with
two plane-wave inputs.

Fig. 8 Paths for the four rays from the two wavefronts that pass
through the image point K.
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r

folded! mirrors are precisely normal to theZ axis, the path
difference between the two arms is given by

d~a,b!5
2 Dd

~12a22b2!1/2'2 Dd1Dd~a21b2!, ~8!

whereDd is defined as

Ddªd12d2 . ~9!

The second~approximate! equality of Eq. ~8! holds for
small values ofa andb. For a continuous source and pa
differences given according to Eq.~8!, the discrete sum of
Eq. ~2! generalizes to an integral:

I ~wz!5

E
u50

2p E
r50

r0

w~r,u!F11v~r,u! cosS 2p

l
Dd r21wzD Gr dr du

E
u50

2p E
r50

r0

r dr du

,

~10!

wherer andu are defined as

rª~a21b2!1/2, ~11!

uªtan21~b/a!, ~12!

andr0 is the sine of the half angular extent of the source.
Eq. ~10!, w(r,u) andv(r,u) are the continuous analogs o
the wi and v i appearing in Eq.~2!. For this example the
source is uniform and temporally coherent, so th
w(r,u)5v(r,u)51. Equation ~10! can be evaluated in
closed form and the resulting maximum and minimum v
ues forI (wz) substituted into Eq.~4!:

V5Usin~p Dd r0
2/l!

p Dd r0
2/l U. ~13!

This represents the exact result with which the numer
estimates for this example are compared.

The set of discrete wavefronts used in this example
approximate the continuous source are now described.
Z axis of a Cartesian coordinate system is aligned with
direction of propagation of the central wavefront in th
source~this central wavefront is parallel to the unfolde
mirrors of the interferometer!. The source is taken to be
series of plane waves arranged on a square grid in opt
direction-cosine space. Only wavefronts whose norm
satisfy (a21b2)1/2,r0 are considered~wherea, b are the
X andY direction cosines of the normal, andr0 is the half
angular extent of the source!. For this example,Dd is taken
to be 30 mm, and in Fig. 9, the fringe visibility is plotted a
r0 varies. This is done for grids with 11 points, 21 poin
and 41 points across the center of the source. The e
visibility found according to Eq.~13! is also shown in Fig.
9. Note that using 11 points gives good agreement up to
first zero of the visibility. Beyond that, it does not wor
very well. This is because the phase difference betw
successive points on the source~i.e., the difference between
@2p(d i2d j )/l# for i and j that correspond to neighborin
1753Optical Engineering, Vol. 39 No. 7, July 2000

2 to 199.197.130.217. Terms of Use:  http://spiedl.org/terms



ted
om

fer
the
th
on
rs
a
ce

s is
ica

an
can

od
u-

ion
he

is-
o-
or.
ght

a

re
te

for
me
ro-
to

rly,
er-
ires
the

x-
ra-
rror

For

d.
ts,

be

led
mi-
of
ve-
urce

Bryan D. Stone: Modeling interferometers with lens design software
wavefronts! is not small compared with 2p. Going to a
denser grid alleviates this problem: the curve associa
with 41 points across the source is indistinguishable fr
the exact curve.

4.3 Example 2: Twyman-Green Interferometer

As a second example, consider the Twyman-Green inter
ometer introduced in Sec. 3.1. Recall that when both
reference mirror and the part under test are conjugate to
detector, the measurement error that results from a n
plane-wave input is negligible. A similar situation occu
with an extended source. Namely, the fringe visibility in
Twyman-Green interferometer is unity when the referen
mirror and part are both conjugate to the detector. Thi
analogous to the Michelson interferometer when the opt
paths in the two arms are the same@i.e., Eq.~13! shows that
V51 when Dd50 regardless of the size of the source#.
Suppose an extended source is used with the Twym
Green interferometer. The distance the reference mirror
move from its conjugate position while maintaining go
contrast fringes is now investigated. Two energy distrib
tions for the source are considered: a uniform distribut
with a 1-deg half angle, and a Gaussian distribution. T
Gaussian is truncated at the 1/e2 point, which also corre-
sponds to 1 deg for this example. The resulting fringe v
ibility as the reference mirror shifts from its conjugate p
sition is plotted in Fig. 10 for the axial point at the detect
~In cases where one suspects the fringe visibility mi
vary, it is straightforward to repeat the calculation for
variety of points across the detector.! This plot indicates

Fig. 9 The fringe visibility as a function of the angular extent of the
source for three different densities of sampling the extended source.
The exact visibility is also given.
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that good contrast fringes~with visibility of greater than
0.8, say! result when the reference mirror is placed no mo
than 0.7 to 0.8 mm from the position where it is conjuga
to the detector.

4.4 Discussion

I emphasize the importance of the ray aiming used here
generating the numerical results in this section. If so
form of random ray tracing were used, such as that p
posed in Ref. 8, a very large number of rays would have
be traced to achieve reasonable accuracy. Simila
launching enough rays from each input wavefront of int
est to fit the output wavefronts at the detector also requ
many more rays than are necessary simply to estimate
fringe visibility from an extended source.

While only plane-wave inputs are considered in the e
amples of this section, it is straightforward to add aber
tions to the input wavefronts. Also, the measurement e
associated with an extended source can be modeled.
this, the average~weighted by thewi! of the OPDs for the
rays coming from the different wavefronts is determine
From these average OPDs for a variety of object poin
plots similar to those shown in Fig. 4 and Fig. 5 can
generated for an extended source.

Finally, note that polychromatic sources can be mode
similarly to extended sources. Start with an equation si
lar to Eq. ~2!, but now, instead of summing over a set
discrete input wavefronts, sum over a set of discrete wa
lengths. In the most general case of an extended so
with polychromatic light, the analog of Eq.~7! can be writ-
ten as

Fig. 10 Fringe visibility as a function of the shift of the reference
mirror for two different energy distributions. A shift of zero repre-
sents the location where the reference mirror is conjugate to the
detector.
V5

H F (
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, ~14!
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Bryan D. Stone: Modeling interferometers with lens design software
whereM is the total number of discrete wavelengths co
sidered, thel j ( j 51,2,3,...,M ) represent the set of discre
wavelengths, thewi j andv i j are the analogs of thewi and
v i appearing in Eq.~2!, andd i j is the OPD associated wit
the detector point for wavefronti and wavelengthj.

5 Mapping the Useful Measurement Range of an
Interferometer

5.1 Statement of Problem

For some applications, one might want to measure m
than just low-spatial-frequency surface figure errors. F
example, there are manufacturing processes that introd
mid-spatial-frequency errors into a surface. When such p
cesses are used, it is logical to determine the range of
tial frequencies and amplitudes that can be measured e
tively by the interferometer used to test the part.
investigate this question, various sinusoidal undulations
placed on a part. By varying the amplitude and spatial f
quency of the undulation and looking at the measurem
error, one can determine the range of amplitudes and sp
frequencies that can be measured. The interferometer
sidered in this example is the Twyman-Green introduced
Sec. 3.1.

Interferometers measure the height of a surface not
direction parallel to the axis, but in a direction normal to
~typically! spherical wavefront. Therefore, it is reasonab
to add a radial sinusoid** to the part under test. For this
consider a base sphere with theZ axis of a Cartesian coor
dinate system aligned with the axis of the interferome
~the coordinate origin is taken to lie on the sphere!. The
equation for the test part used in this example is of the fo

z5
c~x21y2!

11@12c2~x21y2!#1/21
1

2
a

cos~h sin21ucyu!
~12c2y2!1/2 . ~15!

The first term represents the base sphere, and the se
term the sinusoidal undulation. Herec is the curvature of
the part,a is the peak-to-valley~P-V! amplitude of the
undulation, andh controls the number of undulation

** A radial sinusoid is defined here as follows: Consider some arc alo
base sphere. The difference between the base sphere and a sphe
a radial sinusoid is precisely sinusoidal when measured normal to
base sphere and taken as a function of the length along the arc.

Fig. 11 An illustration of the types of parts used to test the useful
measurement range of an interferometer.
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across the part~a higher value ofh gives more undula-
tions!. With this form of error, arc lengths along the ba
sphere between successive minima of the undulation ar
equal. This is illustrated in Fig. 11, where the base spher
shown along with the perturbed surface. The amplitude
not precisely that required for a pure radial sinusoid, but
difference between Eq.~15! and a pure radial sinusoid is o
ordera2, so that for small-amplitude undulations, this giv
a good approximation to a radial sinusoid. Note that
form of Eq. ~15! gives undulations in theY direction. This
suffices for a rotationally symmetric interferometer, but
there are any asymmetries~either due to misaligned ele
ments or from asymmetries in the design!, Eq. ~15! can be
modified trivially to give a sinusoid in any direction acro
the part.

5.2 Discussion of Ray-Aiming Failures—Caustics at
the Detector

Consider a set of undulations with P-V amplitudes rang
from just under 0.005 waves to 10 waves, and for ea
amplitude, start with one undulation and increase the nu
ber of undulations until ray-aiming failures occur. This si
nals that a caustic has moved onto the detector. To sup
this claim, considered an array of equally spaced point
the detector. The initial positions of the rays that~i! are
normal to the input wavefront~which is taken to be plane!
and~ii ! pass through this array of points at the detector
determined. The results are presented in Fig. 12 for p
with six undulations. As the P-V amplitude of the undul
tions increases from 1 wave to 7 waves~in steps of 2
waves!, Fig. 12 shows the initial positions for the rays th
satisfy ~i! and ~ii ! listed above. For the smaller amplitud
undulations, an equally spaced array on the detecto
mapped to a~nearly! equally spaced array at the input. F
5 waves P-V, the rays are seen to be bunched togethe
some regions and spread apart in others, and by 7 wa
P-V this effect is quite pronounced. If the amplitude of t
undulations becomes just a bit larger, then the cau
moves onto the detector and there are some points on
detector for which there are no initial rays, and other poi

ith

Fig. 12 The locations of points at the input that correspond to
equally spaced points at the detector for a test part with undulations
of 1, 3, 5, and 7 waves P-V.
1755Optical Engineering, Vol. 39 No. 7, July 2000
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Bryan D. Stone: Modeling interferometers with lens design software
that get mapped to multiple input points.†† This effect is
viewed another way in Fig. 13. In that figure, rays from
equally spaced set of points at the input are traced thro
the system, and their locations at the detector are shown
the case of six undulations with an amplitude of 7 wav
P-V. If the amplitude of the undulations is increased on
slightly, the rays begin to intersect at the detector. That
the caustic moves onto the detector, and the interferom
no longer directly measures the height of the part.~Note
that with six undulations at 8 waves P-V, the caustic h
moved onto the detector and the ray aiming fails.!

5.3 Measurement Error

Before presenting the results of this study, a discussion
the determination of the measurement error is given. C
sider a single point on the detector. First, the exact he
of the surface being measured is needed. For this, a pe
spherical part is used and the ray~normal to the input
wavefront! that passes through the detector point is de
mined. The actual height of the surface is taken to be
distance between where this ray intersects the per
spherical part and where it intersects the part with the
dulations~with the sign chosen according to which side
the perfect sphere the actual surface lies on!. To determine
the measured height, the OPD for a perfect spherical pa
subtracted from the OPD for the part under test~this simu-
lates calibrating out the errors introduced by the feed le!.
Half of this difference in OPD is the measured height. T
magnitude of the difference between the measured he
and the actual height is the absolute measurement error~for

††Even before the caustic moves onto the detector, there are implica
for detecting the phase that may be important. The energy where
input points are bunched together gets spread out at the detector~result-
ing in lower energy densities there!. If the test and reference arms hav
equal total energy, the lower energy densities at some points~and higher
energy densities at others! coming from the test arm result in lower
contrast fringes, which makes detecting the phase more difficult. T
effect needs to be taken into account in a complete model of an in
ferometric system, but is not discussed further in this paper.

Fig. 13 Rays at the detector for a set of equally spaced points
across the input wavefront for a test part with undulations of 7 waves
P-V.
1756 Optical Engineering, Vol. 39 No. 7, July 2000
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that point on the detector!. The relative error is found by
dividing the absolute error by the P-V amplitude of th
undulations.

For the interferometer considered in this example,
measurement error is determined for points that lie on
lines across the detector. These lines are parallel to thY
axis, but are equally distributed from the linex50 to x
55 mm ~for perfect mapping between the part and det
tor, the edge of the part is 4 mm from the axis!. This is
shown in Fig. 14. The number of points on each line
taken to be the greater of~i! 21 and~ii ! 8 times the number
of undulations on the part. The reported measurement e
is the maximum error for all object points in which rays fa
within the clear aperture of the part under test. The m
sured height and the actual height~as found with the pro-
cedure described above! are plotted in Fig. 15 for the cas
of six undulations with an amplitude of 7 waves P-V f
points on a line through the center of the detector. Not
that the maximum errors occur in the regions of larg
slope ~the maximum measurement error for this part
about 65%!, but that the interferometer does a reasona

s

Fig. 14 Lines that contain the points on the detector that were used
for evaluating the useful measurement range of the interferometer.

Fig. 15 Plot showing the actual and measured height on a test part
with undulations of 7 waves P-V.
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Bryan D. Stone: Modeling interferometers with lens design software
job near the extrema of the sinusoid~where the slope is
low!. Therefore, for a part with a sinusoidal ripple, sa
where one wants to measure only the amplitude of
ripples, the measurement error reported here is pessim
But for a part that rolls off at the edge, where the slope
the rolloff is the same as the slope of this sinusoid,
absolute measurement error reported here is accurate.
claim is further justified towards the end of Sec. 5.4.

5.4 Results

The measurement error is presented now for varying
plitudes and spatial frequencies of the sinusoidal und
tions discussed in Sec. 5.1. Figure 16 shows the rela
measurement error as a function of the number of und
tions across the part for undulations of varying amplitu
For each curve, the data point with the highest relative e
is the last one taken before ray-aiming failures occur. N
that in this model, the discrete nature of the pixels in
typical detector is not taken into account—only errors d
to the optics that compose the interferometer are mode
However, for the sake of argument, say that the detecto
a square that is 10 mm on a side with 100031000 pixel
array. Then for undulations with a P-V amplitude as sm
as 0.005 waves, the transverse size of features on the
that can be resolved is still limited by the optics rather th
by the discrete nature of the pixels.~If we take a 10%
measurement error to be the maximum acceptable,
from Fig. 16 it can be seen that up to about 200 undulati
across the part at an amplitude of 0.005 waves can be
solved. If there are 1000 pixels across the detector,
gives five pixels per undulation, so the discrete nature
the pixels should not limit such a measurement.!

The results presented in Fig. 16 can be used to determ
the region in amplitude–spatial-frequency space o
which the interferometer makes accurate measureme
For example, say a relative measurement error of at m
10% is acceptable, then Fig. 16 can be used to determ
the maximum number of undulations that can be accura
measured for any given amplitude. The results are p
sented pictorially in Fig. 17. In that figure, the amplitude
the undulation that gives a relative error of 10% is plott
as a function of the number of undulations across the p

Fig. 16 Relative error plotted as a function of the number of undu-
lations across the part for various values of the amplitude of the
undulations.
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Undulations that fall into the gray region to the right of th
curve cannot be measured accurately by the interferome
Typically there is some level of noise in the interferome
that prevents features with too small an amplitude fro
being measured. The precise level of thisnoise floorde-
pends on the characteristics of the source and detector
on the method used to determine the phase of the frin
Therefore, it is not shown as a strict boundary in Fig. 1
The area shown in white above the noise floor represe
the region in which the optics in the interferometer allo
accurate measurements.

One last result is interesting to consider. Rather than
relative error shown in Fig. 16, consider the absolute m
surement error. In addition, for each combination of amp
tude and spatial frequency, the maximum slope of the p
is determined.@By slope of the part, I mean the slope of th
difference~measured radially! between the actual part an
the base sphere.# Now consider Fig. 18, which shows th
absolute measurement error as a function of the maxim
slope across the part for undulations with varying amp

Fig. 17 Plot of the amplitude of undulations that give 10% relative
measurement error as a function of the number of undulations
across the part. The white area represents the region in which ac-
curate measurements can be made by the interferometer.

Fig. 18 Absolute error plotted as a function of the maximum slope
across the part for various values of the amplitude of the undula-
tions.
1757Optical Engineering, Vol. 39 No. 7, July 2000

2 to 199.197.130.217. Terms of Use:  http://spiedl.org/terms



es
the
ces

of
ith

er-
are
ing
ros
en
too
ety
is
ns
a
in

d to
ter
thin
the
r-

t th
to

For
m-
th

or-
ere

k
er-
ele
e
ter
atic
er-
it is
e t

n
tha
x-

rate

the
de-
n-

the
to
tics,
the
the
rs.
of

nce
re

in-
and
o-
ter
m-

tion
nd

ew
ir

of
ion

ric
ser-

y,’’

g
f.,

ed

ter

c-

mu-

ry,
s,

Bryan D. Stone: Modeling interferometers with lens design software
tudes. Apparently it is the maximum slope that determin
the absolute error. Therefore, to experimentally map out
useful measurement range of this interferometer, it suffi
to measure the error in the interferometer as a function
tilt: there is no need to fabricate a variety of parts w
various spatial frequencies and amplitudes.

6 Concluding Remarks

In this paper I started with the simple premise that interf
ometers should be modeled in the way in which they
used. This led to the requirement for a particular ray-aim
scheme. Such a scheme has been implemented as mac
commercial lens design software, which was used to g
erate all of the data presented in the examples. These
give the user the capability to model easily a wide vari
of interferometers. As a matter of practical interest, it
useful to place a single interferometer within a single le
file. The option to create multiple configurations within
single lens file can be used to model the individual arms
the interferometer. In cases where a known part is use
calibrate a measurement, the calibration setup of the in
ferometer can be placed in a separate configuration wi
the lens file. This makes switching between arms in
interferometer~and modeling the calibration of an interfe
ometer! quite convenient.

Note that the examples presented here do not exhaus
types of modeling that can be done, but are intended
demonstrate the power and flexibility of these ideas.
example, while I did not present such examples, any nu
ber of system parameters can be perturbed to model
effects of manufacturing errors on interferometer perf
mance. Also, no examples of shearing interferometers w
presented, but I claim that any class of interferometer~in-
cluding shearing! can be modeled within the framewor
presented here. By staying within the confines of comm
cial lens design software, any element that can be mod
in the lens design package~such as gratings and diffractiv
elements! can be incorporated easily into interferome
models. As discussed in Sec. 4, extended, polychrom
sources also can be modeled. While optimization of int
ferometer performance is not explicitly discussed here,
possible to use the proposed approach as part of a routin
optimize interferometer components~such as viewing op-
tics!. The objective function used in the optimizatio
should emphasize those features of the interferometer
are most important for its intended application. For e
ample, this could include increasing the range of accu

Table 1 Specifications of the feed objective.

Surface number Radius (mm) Separation (mm) Material

1 6.20077 1.62779 BK7

2 249.45843 0.21412 Air

3 212.02225 0.41738 F2

4 227.45294 3.09281 Air

5 4.41018 1.41910 BK7

6 25.04456 0.07847 Air

7 24.80785 0.41738 F2

8 36.50909 3.89484 Air
1758 Optical Engineering, Vol. 39 No. 7, July 2000
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measurement for nonnull testing of aspheres, decreasing
measurement error for high-frequency undulations,
creasing the sensitivity of the interferometer to misalig
ment of elements, etc.

The emphasis in this paper is solely on the effects of
optics within an interferometer. However, it is possible
incorporate source characteristics, detector characteris
and phase detection and unwrapping schemes into
model. That is, the approach described here can form
basis for complete system-level models of interferomete
So, the apparent contradiction notwithstanding, the laws
geometrical optics have a lot to say about the performa
of instruments that would not exist but for the wave natu
of light.

7 Appendix

The specifications for the lenses in the Twyman-Green
terferometer introduced in Sec. 3.1 appear in Tables 1
2. This information is required for those wishing to repr
duce~perhaps as part of a check of a similar interferome
model! results presented here. In the model, a BK7 bea
splitter cube~made of BK7 that has faces 25.4 mm wide! is
placed between the feed and viewing optics. The separa
from the beamsplitter cube to both the feed objective a
viewing optics is 50 mm~see Fig. 3!.
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