Corning® ClearCurve® LBL Optical Fiber

Product Information

ColorPro™ Identification

ClearCurve LBL fiber is also

technology. Corning fibers with ColorPro™ identification

technology deliver better

product offering.

How to Order

Contact your sales

representative, or call the Optical Fiber Customer Service Department: Ph: 1-607-248-2000 (U.S./Can.) +44-1244-525-320 (Europe) Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity when ordering.

efficiency in cable manufacturing, simplify inventory management, and leverage an enhanced fiber

ringmarked variants, enabled by ColorPro™ identification

available in colored and

Technology

Optimized for a wide array of indoor installations, Corning® ClearCurve® LBL optical fiber delivers enhanced macrobending performance while maintaining compatibility with current equipment, practices, and procedures. ClearCurve LBL fiber exceeds Recommendation ITU-T G.657.A2/B2 and remains compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value* (dB/km)
1310	≤ 0.35
1383**	≤ 0.35
1490	≤ 0.24
1550	≤ 0.20
1625	≤ 0.23

^{*}Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 — 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel	Number	Wavelength	Induced
Radius	of	(nm)	Attenuation*
(mm)	Turns		(dB)
7.5	1	1550	≤ 0.4
7.5	1	1625	≤ 0.8

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode Field Diameter

Wavelength	Mode Field Diameter
(nm)	(μm)
1310	8.6 ± 0.4
1550	9.6 ± 0.5

Dispersion

Wavelength (nm)	Dispersion Value [ps/(nm•km)]
1550	≤ 18
1625	≤ 23

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): \leq 0.092 ps/(nm²•km)

Polarization Mode Dispersion (PMD)

Value (ps/vkm)

	value (ps/ vkill)
PMD Link Design Value	≤ 0.06*
Maximum Individual Fiber PMD	≤ 0.2

^{*}Complies with ITU-T G.650-2 Appendix IV, (m = 20, Q = 0.01%), August 2015.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_Q). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**}Attenuation values at this wavelength represent post-hydrogen aging performance.

Dimensional Specifications

Glass Geometry

Coating Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Diameter	242 ± 5 μm
Coating-Cladding Concentricity	< 12 μm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

Operating Temperature Range: -60°C to +85°C *Reference temperature = +23°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	1310 nm: 0.14
Effective Group Index of Refraction (n _{eff})	1310 nm: 1.4670 1550 nm: 1.4677
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3 N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB