CORNING

Flexible glass substrates for continuous manufacturing

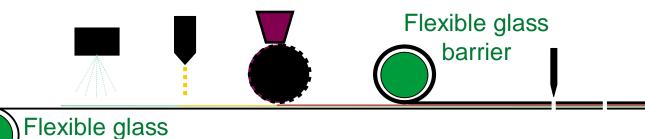
- Corning S. Garner , G. Merz , J. Tosch, J. Matusick, X. Li , D. Marshall
- CAMM C. Chase, J. Steiner, D. Yepez, J. Switzer, P. Moschak

Science & Technology

February 9, 2011

Outline

- Flexible glass for electronic devices
- Flexible glass mechanical reliability
 - Strength
 - Coatings
 - Stress
- Roll-to-roll photolithography
- Summary


Flexible Glass Enables High-Quality Electronics

Substrate choice critical for device fabrication & performance

- Substrate integrates designs, materials, & processes
 - Essential for overall optimization

substrate

- Glass enables improved resolution, registration, performance & lifetime

Flexible Glass

- Thermal stability
- Dimensional stability
- Hermeticity
- Optical transmission
- Surface roughness

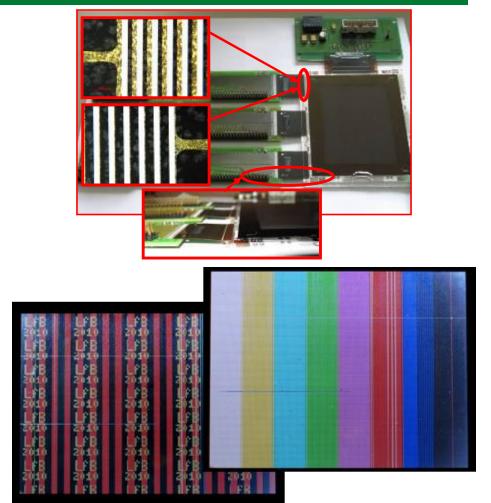
Requirements

Device Designs E-paper, touch sensor, PV, OLED

<u>Materials</u> Conductor, semiconductor, dielectric

Continuous Processes

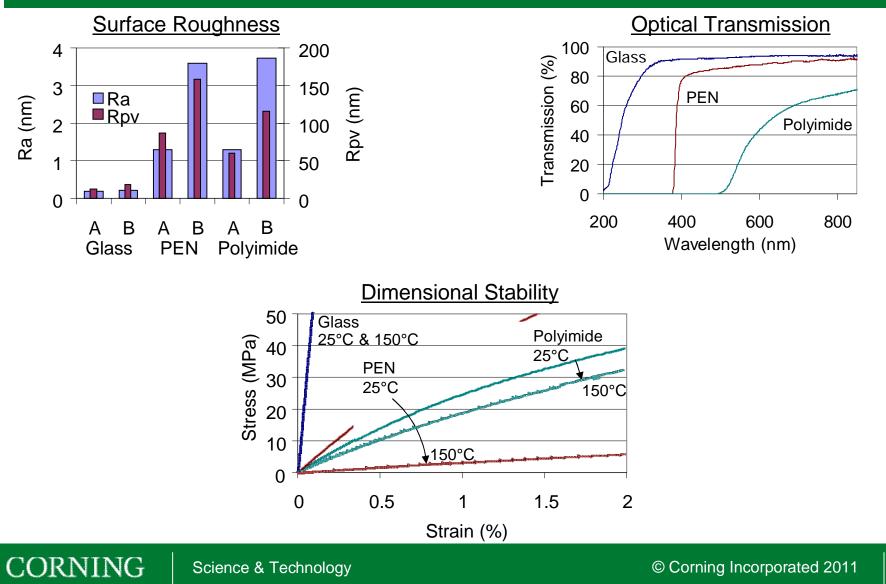
- Patterning (gravure, ink jet, photolithography)
- Etching (wet, plasma)
- Coating (lamination, slot die, vacuum)


CORNING

Science & Technology

3

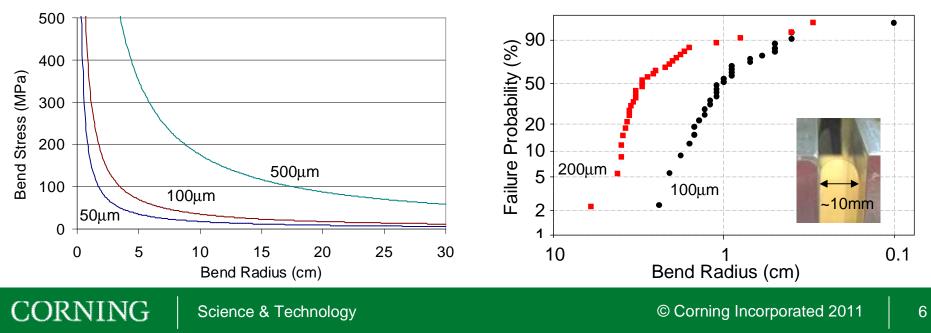
Glass Surface & Bulk Properties Optimize Devices Flexible glass device capability demonstrated in <170µm LCD


- Twisted nematic LCD
- qVGA (320 x RGB x 240)
- 4" diagonal (80mm x 60mm)
- Pixel size 83µm x 250µm
- Aperture 52%
- a-Si:H active matrix backplane
- TFT channel L=10µm, W=50µm
- Polymeric substrates not compatible
 - 300°C backplane fabrication
 - 210°C frontplane fabrication
- 75µm flexible glass thickness
 LC cell <170µm

S. Hoehla, et al., "Full Color AM-LCDs on Flexible Glass Substrates", IDW 2010, p.1689-1692.

CORNING Science & Technology

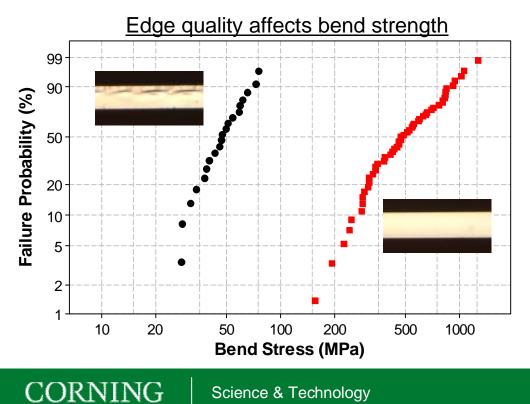
Glass Enables Performance & Process Optimization Flexible glass offers dimensional stability for R2R fabrication

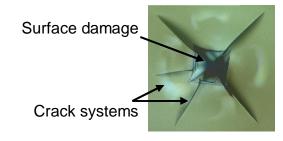


5

Mechanical Reliability of Flexible Glass

Substrate solutions optimized for continuous processing


- Mechanical reliability of glass understood
 - Failure due to distributions of defects & applied stresses
 - Bend strength independent of thickness
- Mechanical reliability requires controlling defects & applied stress
 - High strength glass forming including surfaces & edges
 - Protecting substrate from damage
 - Managing stresses during conveyance, handling & application

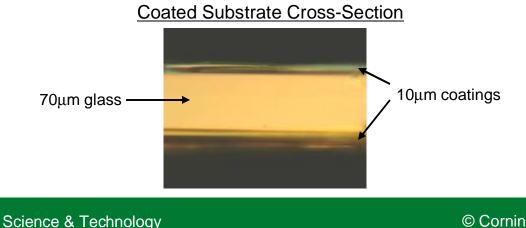

Glass After Forming is Inherently Strong

Managing defect size & distribution enables reliability

- Pristine glass surfaces are extremely strong
 - Bend strengths >6GPa measured in substrate compositions
 - Subsequent handling & environment can reduce strength ~100x
- Glass strength depends on glass history
 - Quality of surfaces & edges critical

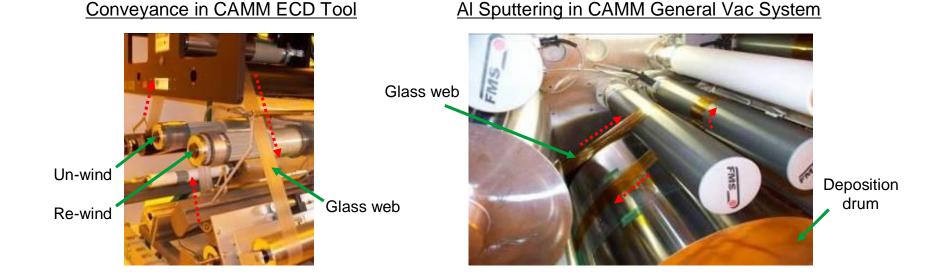
Surface quality affects bend strength

Science & Technology


7

Protective Coatings Preserve Glass Strength Coating selection specific to application

- Crack systems form when flaw size & stress reach threshold
- Coatings minimize contact damage induced during:
 - Handling, packaging, shipping
 - Device manufacturing
 - In-service use

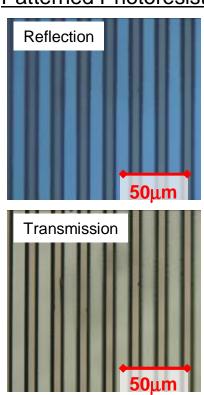

CORNING

- Coating optimized for specific device & fabrication processes
 - Material & thickness selected for anticipated conditions
 - Full-width and partial-width coatings enable different device designs
 - Mechanical properties dominated by glass

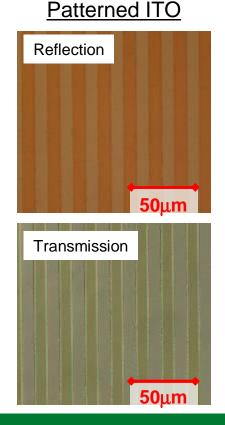
Convey Flexible Glass with Roller Systems Requires managing bend stress during device fabrication

- Flexible glass is flexible Do not handle as rigid substrate
 - Stiffness of 50µm glass ≈ 120µm PEN
 - Control stresses through roller handling system
 - Approach compatible with sheet-fed or roll-to-roll systems

Flexible Glass is Compatible with R2R Processing **Demonstrated continuous ITO patterning**


CORNING


Science & Technology


CAMM

Roll-to-Roll Patterning of 10µm ITO Lines Deposition, slot coat, repeated exposure, develop & etch

- Spooled glass with partial width coating
- 10 μ m ITO lines with 30 Ω / \Box resistivity

Science & Technology

Summary

- Flexible glass offers advantages for device designs, materials & processes
 - Includes dimensional & thermal stability and hermeticity
 - Enables high performance active devices
- Glass mechanical reliability understood
 - Form high initial strength & minimize defects
 - Manage stresses with appropriate conveyance
 - Optimized solutions are application specific
- Flexible glass is compatible with continuous processing
 - Demonstrated patterning of 10µm ITO lines
 - Process optimizations possible to take advantage of glass capabilities

Acknowledgements

- Corning
 - Scott Glaesemann
 - Don Clark
 - Jill VanDewoestine
 - Michael Sorensen
- CAMM
 - Mark Poliks

CORNING