Corning® SMF-28® Ultra 光纤

产品信息

CORNING

Corning® SMF-28® Ultra 光纤集业界领先的衰减特性, 优于 ITU-T G.657.A1 的弯曲性能, 以及 9.2 微米 的模场直径等三种特性于一体。这种全谱光纤可应用于运营商网络和数据中心的连接,与现网中铺设 的传统单模光纤兼容。SMF-28 Ultra 现有两种版本供客户选择: 与传统光纤一致的242 µm 外径光 纤,和涂层减薄至200 μm 外径的光纤。这种小外径光纤可以支持提供更小尺寸,更轻质量和更大芯 数的光缆

光学指标

最大衰减	
波长 (nm)	最大值* (dB/km)
1310	≤ 0.32
1383**	≤ 0.32
1490	≤ 0.21
1550	≤ 0.18
1625	≤ 0.20

^{*}可应要求提供其他衰减值。

相对于波长的衰减变化

宏弯损耗

心轴半径

(mm)

10

10

15

15

30

范围 (nm)	参照波长 λ (nm)	最大增量 α (dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

在给定波长范围内的衰减与参考波长(λ)相比不超过增 量值α。

波长

(nm)

1550

1625

1550

1625

1625

咨询定购

请联络您的销售代表或光 纤客户服务部门: 销售热线:

得益于ColorPro®识别技术 SMF-28 Ultra 有着色和带色环的

光纤可供选择。使用ColorPro® 识

别技术的康宁光纤可以实现更高 的光缆生产效率, 简化库存管 理, 为客户提供更多样的光纤产

 \pm 86 21 64851510 客服热线:

+86 21 64959897 定购时请指明光纤类型,

衰减和数量

点不连续性

波长 (nm)	点不连续性 (dB)
1310	≤ 0.05
1550	≤ 0.05

光缆截止波长 (λ...)

 $\lambda_{cc} \leq 1260 \text{ nm}$

模场直径

波长 (nm)	模场直径 (μm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

色散

附加衰减*

(dB)

≤ 0.50

≤ 1.5

≤ 0.05

≤ 0.30

≤ 0.1

波长 (nm)	色散值 [ps/(nm•km)]
1550	≤ 18
1625	≤ 22

零色散波长 (λ₀): 1304 nm ≤ λ₀ ≤ 1324 nm 零色散斜率(S₀): ≤ 0.092 ps/(nm²•km)

偏振模色散 (PMD)

	指标值 (ps/√km)
PMD 链路值	≤ 0.04*
单根光纤最大值	≤ 0.1

^{*}符合 ITU-T G.650-2 附录 IV, (m = 20, Q = 0.01%), 2015 年8月。

链路值主要用于描述光纤不同连接长度下的PMD值(亦 称为PMDQ)。该值表示整个链路偏振模色散的统计长 限。当光纤成缆时,PMD值可能发生变化。

圈数

10

10

100

^{**}此数值为氢老化之后的各波长最大衰减值。

^{*}由于光纤缠绕在特定心轴所产生的附加衰减。

尺寸指标

玻璃几何尺寸

光纤翘曲度	曲率半径≥ 4.0 m
包层直径	125.0 ± 0.7 μm
纤芯包层同心度	≤ 0.5 μm
包层不圆度	≤ 0.7%

涂层几何尺寸

	标准直径	200 μm 直径
涂层直径	242 ± 5 μm	200 ± 5 μm
涂层包层同心度	< 12 μm	≤ 10 μm

环境指标

附加衰减 1310 nm, 1550 nm 和 1625 nm (dB/km) 环境测试 测试条件

		1550 Hill / 1025 Hill (ab/ kill)
温度范围	-60°C 至 +85°C*	≤ 0.05
温度湿度循环	-10℃至 +85℃ (可达98% 相对湿度)	≤ 0.05
浸水	23°C ± 2°C	≤ 0.05
热老化	85°C ± 2°C	≤ 0.05
湿热	85℃ (85% 相对湿度)	≤ 0.05

工作温度范围: -60℃ 至 +85℃ *参考温度 = +23℃

机械指标

筛选测试

光纤的全部长度均经过 ≥100 kpsi (0.69 GPa)*的张力筛选试验。可提供更高级别的筛选测试。

光纤长度可达50.4公里/卷。

性能特征

特征参数为典型值。

数值孔径	0.14 数值孔径是在1310 nm一维远场扫描1%功率水平处 的测量。
有效群折射率 (n _{eff})	1310 nm: 1.4676 1550 nm: 1.4682
抗疲劳参数 (n _d)	20
涂层剥除力	干:标准直径,0.6 磅 (3 N) 200 μm 直径,0.5 磅 (2 N)
	湿(室温下14天): 标准直径,0.6 磅 (3 N) 200 μm 直径,0.5 磅 (2 N)
Rayleigh 反向散射系数 (脉冲宽度为1 ns)	1310 nm: -77 dB 1550 nm: -82 dB

www.corning.com/opticalfiber

Corning, SMF-28和ColorPro是Corning Incorporated, Corning, N.Y.的注册商标

© 2024 Corning Incorporated. 版权所有