Corning[®] TransportoCells[™]

Cryopreserved Transporter Cells

CORNING

Corning[®] TransportoCells[™] products are high-performance mammalian cells in a convenient, cryopreserved format that transiently overexpress a single human SLC transporter protein. The frozen cells deliver robust data, while eliminating the time required to culture and maintain stable cell lines.

Culturing and maintaining stable transporter cell lines can be expensive and time-consuming. In addition, it can take a week or more to prepare cells for assaying. Corning TransportoCells products can be thawed, plated, and assayed in just two days with high uptake ratios.

Features

- Cryopreserved format provides flexibility for experimental planning
- Cells are readily available, can be stored onsite, and shipped globally
- Cells can be thawed, plated, and assayed in just two days
- Robust results with uptake ratios ≥10 fold
- Consistent with other mammalian cell-based models
- One vial contains 10 million cells and supports one 24-well plate, one 48-well plate, or one 96-well microplate
- Includes current USFDA, European Medicines Agency (EMA), and International Transporter Consortium (ITC) recommended SLC drug transporters

Convenient and Cost-efficient

Corning TransportoCells products are a convenient, cost-efficient alternative to maintaining stable cell lines. They provide the utmost flexibility for experimental planning. The cells can be removed from storage one day and assayed the following day.

Robust and Validated

Corning TransportoCells products deliver high performance and robust data with uptake ratios ≥10 fold. The model has been fully validated for substrate specificity, transporter kinetics and inhibition profiles to ensure data are consistent with existing transporter cell models.

Supports Regulatory Recommendations

Corning TransportoCells products support USFDA, EMA, and ITC recommendations for identification of drug transporters and transporter drug-drug interaction studies critical in the development of new investigational drugs.

Contract Research Services Available

SLC Transporter Interaction Studies using Corning TransportoCells products are available from Corning Gentest[™] Contract Research Services. All assays are designed and built to meet regulatory agency recommendations. Table 1. Performance summary of Corning[®] TransportoCells[™] cryopreserved SLC transporter cells. The post-thaw viability exceeds 80%. Uptake activity of HEK-293 cells transiently over-expressing a single SLC transporter protein as listed below, are evaluated by incubating the cells with listed prototypical substrates at indicated concentration. Uptake ratio is calculated by dividing uptake activity measured in the SLC transporter cells by that in control cells.

Transporters	Post-Thaw Viability	Probe Substrate	Incubation Time (min)	Uptake Activity in Transporter Cells (pmol/mg/min)	Uptake Activity in Control Cells (pmol/mg/min)	Uptake Ratio
OATP1B1*1a	90%	2 μM E17βG	5	72.2 ⁺	0.57*	127^{\dagger}
OATP1B1*1a	90%	5 μM F-MTX	10	676 ⁺	36†	18.8^{+}
OATP1B1*5	90.90%	5 μM F-MTX	10	305 ⁺	36†	8.5 ⁺
OATP1B1*15	91.90%	5 μM F-MTX	10	228 ⁺	36†	6.3 [†]
OATP1B3	91%	2 µM CCK-8	5	35.3 ⁺	0.17^{+}	212 [†]
OAT1	93%	3 µM PAH	10	141.0	0.38	372
OAT2	93.90%	2 μM C-GMP	2	293	4.69	62.4
OAT3	88%	2 µM E3S	5	121.1	0.91	133
OAT4	92.80%	2 µM E3S	5	42.5	1.49	28.5
OCT1	88%	30 µM TEA	10	253.0	4.8	53
OCT2	89%	30 µM TEA	10	171.5	4.8	36
MATE1	95%	30 µM TEA	2	1,166†	24.8 ⁺	47 [†]
MATE2-K	92%	30 µM TEA	2	664 ⁺	15.1 ⁺	44 ⁺
PEPT1	94%	50 μM GlySar	5	617†	9.1 ⁺	68 [†]
PEPT2	90%	50 μM GlySar	5	1,568 ⁺	13.4 ⁺	117^{\dagger}
OATP2B1	90%	2 µM E3S	5	36.9	1.54	24
OATP1A2	92%	2 µM E3S	5	54.6 ⁺	2.81 ⁺	19^{\dagger}
NTCP	94%	2 μM TCA	5	111†	1.1^{\dagger}	104 ⁺
OCTN2	91.60%	2 μM L-Carnitine	10	166	4.8	34.6
Rat Oatp1b2	91%	2 μM E17βG	5	66.7	1.26	53
Dog Oatp1b4	93%	2 μM E17βG	5	15.3	0.76	20
Monkey Oatp1b1	93.70%	2 μM E17βG	5	25.1	1	24.6

 $^{\rm +2}$ mM Sodium Butyrate was supplemented in the plating media.

Figure 1. Cell morphology after 24 hours plating on poly-D-lysine plate. After 24 hours post-plating on the Poly-D-Lysine plate, the HEK-293 cells transiently overexpressing transporters formed a confluent monolayer. The image represents OATP1B1*1a cells.

Substrate Rosuvastatin	K _m (μM) 7.5	K _m (μM)	Literature Reference
Rosuvastatin CCK-8	7.5	121	
CCK-8		12.1	E. van de Steeg, et al. DMD (2013)
	20.2	16.5 ^{<i>a</i>}	Poirier A, et al. J Pharmacokinet Pharmacodyn (2009)
PAH	87.5	28	Ueo H, et al. Biochem Pharmacol (2005)
cGMP	138	88	Cropp C, et al. Mol Pharmacol (2008)
E3S	4.0	6.3	Ueo H, et al. Biochem Pharmacol (2005)
E3S	8.9	20.9	Yamashita F, et al. J Pharmacy and Pharmacology (2006)
TEA	713	566 ^b	Iwai M, et al. Drug Metab Dispos (2009)
TEA	401	431 ^c	Gorboulev V, et al. DNA Cell Biol (1997)
Metformin	282	227	Chen Y, et al. Pharmacogenomics J (2009)
Metformin	824	1,050	Masuda S, et al. J Am Soc Nephrol (2006)
GlySar	970	1,100 ^d	Knutter I, et al. Drug Metab Dispos (2009)
GlySar	78	140 ^e	Knutter I, et al. Drug Metab Dispos (2009)
E3S	9.3	10.2	Noé J, et al. Drug Metab Dispos (2007)
TCA	14	7.5 ^f	Ho R, et al. J Biol Chem (2004)
L-Carnitine	16.9	4.3	Tamai I, et al. J Biol Chem (1998)
-	CGMP E3S E3S TEA TEA Metformin Metformin GlySar E3S TCA L-Carnitine cell line; ^b Tested ir	PAH 87.5 cGMP 138 E3S 4.0 E3S 8.9 TEA 713 TEA 401 Metformin 282 Metformin 824 GlySar 970 GlySar 78 E3S 9.3 TCA 14 L-Carnitine 16.9 cell line; ^b Tested in S2-stable cell I	PAH 87.5 28 cGMP 138 88 E35 4.0 6.3 E35 8.9 20.9 TEA 713 566 ^b TEA 401 431 ^c Metformin 282 227 Metformin 824 1,050 GlySar 970 1,100 ^d GlySar 78 140 ^e E35 9.3 10.2 TCA 14 7.5 ^f L-Carnitine 16.9 4.3 cell line, ^b Tested in 52-stable cell line; 'Tested in 00 100

Figure 2. SLC transporter cells kinetic assay. Concentrationdependent uptake of prototypical substrates in the listed SLC transporter cells are determined. The solid line represents the nonlinear fit of the uptake into the transporter cells minus the uptake in the control cells. K_m values of the listed prototypical substrates are comparable to those published in the literature. Testing system is HEK-293 stable cell line, except where noted.

Others are all tested in HEK-293-stable cell line

Test Inhibitor Literature Reference Transporter Substrate IC₅₀ (μM) IC₅₀ (μM) System OATP1B1*1a 0.31 Ho RH, et al. Gastroenterology (2006) Rosuvastatin Cyclosporin A 0.9 Hela OATP1B3 Rosuvastatin Cyclosporin A 0.3 0.06 Hela Ho RH, et al. Gastroenterology (2006) Ho ES, et al. J Am Soc Nephrol (2001) OAT1 PAH Probenecid 7.2 6.5 сно Takeda M, et al. Eur J Pharmacol (2001) E3S 9 OAT3 Probenecid 8.8 S2 OCT1 TEA Decynium-22 2.2 2.7 Hela Zhang L, et al. JPET (1998) Okuda M, et al. Biochim Biophys Acta (1999) OCT2 TEA Decynium-22 7 13.8 Oocytes MATE1 Metformin Verapamil 15 27.5 HEK Tsuda M, et al. JPET (2009) MATE2-K Metformin Verapamil 37 32.1 HEK Tsuda M, et al. JPET (2009)

Figure 3. SLC transporter cells inhibition assay. IC₅₀ values for the indicated transporter modulators are determined by incubating the cells with the prototypical substrate at a fixed concentration with the selected modulator at a range of concentration. The IC₅₀ values generated using TransportoCells products are comparable to that published in the literature.

Figure 4. Corning[®] TransportoCells™ lot-to-lot consistency. Four lots of OATP1B1*1a cells (Corning Cat. No. 354859) were plated at the same time at 200K per well in a 48-well PDL-coated plate. Cells were refed with fresh media supplemented with 2 mM sodium butyrate at 3 to 4 hours postplating and assayed at 24 hours post-plating by incubating with 2 μM estradiol-17β-glucuronide for 5 minutes. Average uptake activity of the four lots is 62 pmol/mg/min with CV of 3.5%.

Ordering Information

Corning TransportoCells Cryopreserved SLC Transporter Cells

Cat. No.	Description	Full Name	Gene Accession Number	Number of Cells
354851	OATP1B3/SLCO1B3	Organic anion-transporting polypeptide 1B3	NM_019844	≥10 million
354852	OCT1/SLC22A1	Organic cation transporter 1	NM_003057	≥10 million
354853	OCT2/SLC22A2	Organic cation transporter 2	NM_003058	≥10 million
354854	Vector Control	N/A	N/A	≥10 million
354855	MATE1/SLC47A1	Multidrug and Toxin Extrusion transporter 1	NM_018242	≥10 million
354856	MATE2-K/SLC47A2	Multidrug and Toxin Extrusion transporter 2-K	NM_001099646	≥10 million
354857	OAT1/SLC22A6	Organic anion transporter 1	NM_004790	≥10 million
354858	OAT3/SLC22A8	Organic anion transporter 3	NM_004254	≥10 million
354859	OATP1B1*1a/SLCO1B1*1a	Organic anion-transporting polypeptide 1B1, Wild Type (388A)	NM_006446.4	≥10 million
354860	PEPT1/SLC15A1	Peptide transporter 1	NM_005073	≥10 million
354861	PEPT2/SLC15A2	Peptide transporter 2	NM_021082	≥10 million
354862	OATP2B1/SLCO2B1	Organic anion-transporting polypeptide 2B1	NM_007256	≥10 million
354863	OATP1A2/SLCO1A2	Organic anion-transporting polypeptide 1A2	NM_021094	≥10 million
354864	NTCP/SLC10A1	Na ⁺ -taurocholate cotransporting polypeptide	NM_003049	≥10 million
354866	OCTN2	Organic cation/carnitine transporter 2	NM_003060	≥10 million
354867	OAT2	Organic anion transporter 2	NM_006672	≥10 million
354868	OAT4	Organic anion transporter 4	NM_018484	≥10 million
354841	Rat Oatp1b2	Rat organic anion-transporting polypeptide 1b2	NM_031650	≥10 million
354842	Dog Oatp1b4	Dog organic anion-transporting polypeptide 1b4	GQ497899	≥10 million
354843	Monkey Oatp1b1	Monkey organic anion-transporting polypeptide 1b1	JX866725	≥10 million
354878	OATP1B1*5	Organic anion-transporting polypeptide 1B1 SNP (521T>C)	NM_006446.4 with 521T>C	≥10 million
354879	OATP1B1*15	Organic anion-transporting polypeptide 1B1 SNPs (388A>G, 521T>C)	NM_006446.4 with 388A>G, 521T>C	≥10 million

Related Products and Contract Research Services

- ABC human and animal transporter membranes and vesicles
- ATPase assay kit
- BCRP/MRP and BSEP vesicle assay kits
- MDR1 LLC-PK1 (P-gp) cell line
- Transporter-qualified hepatocytes
- Corning[®] media, buffers, and supplements (DMEM, FBS, non-essential amino acids, HBSS)
- Transwell[®] permeable supports
- ▶ Corning, Falcon[®], and BioCoat[™] microplates
- Caco-2 5-day assay system
- ▶ Corning GentestSM Contract Research Services assays designed and built to meet regulatory agency recommendations
 - ABC transporter interaction studies in cell lines and vesicles
 - SLC transporter interaction studies in Corning TransportoCells cryopreserved transporter cells
 - Transporter models include: Caco-2, transfected cell lines, vesicles, membranes, hepatocytes
 - Other in vitro drug-drug Interaction studies, including enzyme induction and enzyme inhibition

For more specific information on claims, visit the Certificates page at www.corning.com/lifesciences.

Warranty/Disclaimer: Unless otherwise specified, all products are for research use only. Not intended for use in diagnostic or therapeutic procedures. Not for use in humans. Corning Life Sciences makes no claims regarding the performance of these products for clinical or diagnostic applications.

Use of Genetically Modified Microorganisms (GMM)

Information for European Customers: These products are genetically modified as described in Corning Life Sciences technical literature. As a condition of sale, use of this product must be in accordance with all applicable local guidelines on the contained use of genetically modified microorganisms, including the Directive 2009/41/EC of the European Parliament and of the Council.

For additional product or technical information, visit www.corning.com/lifesciences or call 800.492.1110. Customers outside the United States, call +1.978.442.2200 or contact your local Corning sales office.

Corning Incorporated Life Sciences 836 North St. Building 300, Suite 3401 Tewksbury, MA 01876 t 800.492.1110 t 978.442.2200 f 978.442.2476 www.corning.com/lifesciences	Worldwide Support Offices ASIA/PACIFIC Australia/New Zealand t 61 427286832 China t 86 21 3338 4338 f 86 21 3338 4300 India t 91 124 4604000 f 91 124 4604099	Japan t 81 3-3586 1996 f 81 3-3586 1291 Korea t 82 2-796-9500 f 82 2-796-9300 Singapore t 65 6572-9740 f 65 6861-2913 Taiwan t 886 2-2716-0338 f 886 2-2516-7500	EUROPE France t 0800 916 882 f 0800 918 636 Germany t 0800 101 1153 f 0800 101 2427 The Netherlands t 31 20 655 79 28 f 31 20 659 76 73 United Kingdom t 0800 376 8660 f 0800 279 1117	All Other European Countries t 31 (0) 20 659 60 51 f 31 (0) 20 659 76 73 LATIN AMERICA grupoLA@corning.com Brasil t (55-11) 3089-7400 f (55-11) 3167-0700 Mexico t (52-81) 8158-8400 f (52-81) 8313-8589
---	---	---	--	---

CORNING | FALCON AXYGEN

