Effective Blocking Procedures in ELISA Assays
Application Note

Judy Gibbs, Michelle Vessels, Mark Rothenberg, Ph.D.
Corning Incorporated, Life Sciences
Kennebunk, ME USA

Introduction
Solid phase immunoassays, such as ELISA, involve the immobilization of biomolecules, primarily proteins, to the surface via passive or covalent interactions. The ability of the surface to interact with proteins and other biomolecules is obviously an essential feature; however, non-specific binding (NSB) of other proteins or biomolecules to unoccupied spaces on the surface during subsequent steps of the assay can be detrimental to the specificity and sensitivity of the assay results. Non-specific binding to the surface can be minimized by saturating these unoccupied binding sites with a blocking reagent — a collective term for various substances that are used to reduce NSB without taking an active part in specific assay reactions. (Other factors can influence NSB, such as protein-protein interactions that are unique to each ELISA system, and must be considered during assay development and optimization). Blocking reagents and methods are typically chosen in an empirical manner, since a single standardized procedure has not been determined suitable for all applications. However, for any given application or assay, a best method usually can be found quite readily if one chooses a blocking reagent/method based on:

- Type of surface
- Type of biomolecule immobilized to the surface
- Type of detection probe/system employed

The two major classes of blocking reagents are:

- Proteins
- Detergents (typically non-ionic)

Both classes have advantages and disadvantages, which will be discussed in this application note and measured against the properties of an ideal blocking reagent (keeping in mind that a universal blocking reagent for all assays is idealistic, not realistic). An ideal blocking reagent should:

- Inhibit non-specific binding (passive and covalent) of assay components to the surface
- Inhibit non-specific protein-protein interactions
- Exhibit no cross-reactivity with subsequent assay components (i.e., antibodies, Protein A)
- Act as a stabilizer for (or assist in renaturing) biomolecules by minimizing the effects of denaturation caused by phase transitions associated with solid phase assays
- Exhibit low enzyme activity (or other activity that may interfere with the detection method)

Typical Problems Associated with Blocking Reagents
Since no blocking reagent or method is ideal for all assays, one must consider the advantages and disadvantages of each type and assess how these features will affect the assay. Some of the major problems associated with blocking reagents in general are:

- Lot-to-lot inconsistencies (certain sources of bovine serum albumin, fish gelatin, and normal mammalian serum vary in quality from lot-to-lot),
- Masking of surface bound proteins by interfering with specific protein-protein interactions (fish gelatin tends to block protein-protein interactions more tenaciously than protein-surface interactions, thus reducing specific binding more so than non-specific binding),
- Lack of molecular diversity (many single molecule blocking reagents lack the diversity to block surfaces comprised of hydrophobic, ionic, and covalent regions),
- Cross-reactivity with assay components (i.e., Protein A will cross-react with the non-specific IgG molecules of normal mammalian serum),
- Disruption of non-covalent bonds between specific biomolecules and the surface (i.e., non-ionic detergents may displace hydrophobically attached proteins and biomolecules),
- Interference with detection due to endogenous enzyme activity, intrinsic fluorescence, etc.

Detergent Blockers
One of the major classes of blocking reagents is detergents – non-ionic and ionic. For solid phase immunoassays on polystyrene (or other hard plastic), ionic detergents are seldom used as the sole blocking mechanism due to:

- Their propensity to disrupt ionic and hydrophobic biomolecule-surface bonds
- Their ability to solubilize proteins
- Their tendency to inhibit (or terminate) enzyme-substrate reactions
Zwitterionic detergents are simply poor blockers so are not even considered as blocking reagents. Typically, detergents used as blocking reagents are non-ionic; the most common being TWEEN® 20. Detergents are considered temporary blockers; they do not provide a permanent barrier to biomolecule attachment to the surface because their blocking ability can be removed by washing with water or aqueous buffer. To be useful as the sole blocking reagent in an assay, detergents must be present in all the diluents/buffers subsequent to coating the surface with a capture molecule. However, when used in conjunction with a protein blocker, detergents provide added convenient and inexpensive blocking ability during wash steps, etc. by blocking areas on the surface that may become exposed due to protein/biomolecule desorption.

Non-ionic detergents are advantageous for the following reasons:

- Inexpensive, even though they must be used at a concentration equal to or greater than their Critical Micelle Concentration (CMC) value (typical concentrations for TWEEN 20 are 0.01% to 0.10%)
- Extremely stable and can be stored in diluted form (i.e., wash buffers) at room temperature for extended periods of time without experiencing any loss of blocking activity
- Useful in washing solutions because their presence blocks areas on the surface that may be physically stripped of specifically bound biomolecules during the wash step and helps dislodge loosely bound biomolecules that are physically trapped in corners
- Major disadvantages associated with non-ionic detergents are:
 - They may disrupt non-covalent biomolecule-surface bonds.
 - They block hydrophobic interactions only.
 - Residual detergent left in wells following the immobilization of a peroxidase conjugate can interfere with its enzymatic activity.
 - They are not permanent blockers.
 - They cannot be used with lipopolysaccharides due to their ability to successfully compete against these biomolecules for surface space.

Our recommendation for using a non-ionic detergent as a blocking reagent for hard plastic assays (i.e., 96-well microplates or strips) is to include it in the wash buffer and not use it as the sole blocking reagent for the assay. TWEEN 20 is the most commonly used at concentrations ranging from 0.01% to 0.1%. Some non-ionic detergents, such as Triton™ X-100, although excellent blockers of non-specific binding to the surface, can cause a high loss of specific binding, resulting in false negative results. By using non-ionic detergents at low concentrations in wash buffers, the negative aspects can be avoided, while the benefit of added blocking ability can still be exploited.

Protein Blockers

Protein blockers can serve two purposes:

- Block non-occupied sites on the surface
- Space out and stabilize biomolecules bound to the surface to reduce steric hindrance and denaturation problems associated with solid phase assays

Unlike non-ionic detergents, proteins are permanent blockers and only need to be added once after the surface is coated with the capture molecule. However, it is common practice to add protein blockers to diluents used for subsequent assay reactants to further reduce background and stabilize surface bound biomolecules. Some of the most commonly used protein blockers are:

- Bovine serum albumin
- Non-fat dry milk or casein
- Whole normal serum
- Fish gelatin

Each of these blockers has its own advantages and disadvantages.

Bovine Serum Albumin

Bovine serum albumin (BSA) is typically used at a 1% to 3% concentration. BSA is inexpensive and can be stored dry or as a sterile solution at 4°C. The use of BSA as a blocking reagent is well documented and has been proven to be a good blocker of non-specific protein-surface binding on medium and high binding surfaces, as well as many of the pre-activated covalent surfaces. An advantage associated with using BSA is its compatibility with Protein A. Disadvantages associated with BSA include:

- Lot-to-lot variability — primarily related to the fatty acid content (BSA used as a blocking reagent should be fatty acid free)
- Presence of phosphotyrosine in Fraction V preparations that cross-reacts with anti-phosphotyrosine antibodies
- Cross-reactions with antibodies prepared against BSA-hapten conjugates (BSA is typically linked to small haptens that lack the ability to elicit an immune response as individual molecules)
- Lack of diversity required to block some covalent surfaces that feature hydrophobic, ionic, and covalent characteristics

Despite its disadvantages, BSA is probably the most widely used blocking reagent for solid phase immunoassays.

Non-fat Dry Milk

Non-fat dry milk (NFDM) is typically used at 0.1% to 0.5% concentrations and is relatively inexpensive; however, preparations vary in quality. We have found only one source of NFDM (a 2% solution) that exhibits acceptable lot-to-lot consistency and stability. NFDM, either homemade or commercial, has a tendency to deteriorate rapidly if not properly prepared and stored. Although casein, a non-fat dry milk component, can be used as a stable blocking reagent (primarily for DNA blots). NFDM tends to be more dispersible in aqueous buffers than pure casein. This may explain why it is the better blocker of the two on hard plastic surfaces. Although NFDM is compatible with Protein A and exhibits little cross-reactivity with typical immunoassay components, it does express the following reactivity related problems:

- Milk contains phosphotyrosine which reacts with anti-phosphotyrosine antibodies
- Some preparations of NFDM may contain histones that interfere with anti-DNA determinations
- Alkaline phosphatase activity can be inhibited by some preparations of NFDM

Overall, these are minor issues. NFDM is an excellent blocking reagent. Due to its molecular diversity and amphipathic characteristics, NFDM is the preferred blocking reagent for many covalent surfaces.
Fish Gelatin
Although fairly popular as a blocking reagent, fish gelatin has some major disadvantages. Typically, gelatin is not an adequate blocker when used alone and is actually the least effective biomolecule-surface blocker discussed in this application note. It blocks mainly protein-protein interactions, sometimes masking specific surface-bound proteins and interfering with immunoreactivity. The inferior surface blocking ability and the protein-masking characteristic of gelatin results in higher background and decreased sensitivity. Gelatin also tends to vary in quality from lot-to-lot. The greatest advantage associated with fish gelatin is its lack of cross-reactivity with mammalian antibodies and Protein A.

Whole Sera
For extremely difficult blocking problems, the use of normal whole sera at a 10% concentration is recommended. Due to its molecular diversity, whole sera effectively blocks non-specific:
- Biomolecule-surface (passive adsorption) interactions
- Biomolecule-covalent surface interactions
- Protein-protein interactions, while acting as a protein stabilizer as well

The disadvantages of using normal whole sera as a blocking reagent center around its cross-reactivity with Protein A and anti-IgG antibodies. Since many immunoassays rely on a system that utilizes a labeled (enzyme, radiolabel, etc.) secondary anti-IgG antibody, blocking with normal whole sera can lead to false positive reactions and high non-specific binding due to this cross-reactivity issue. Alternatives to normal mammalian sera are fish or chicken sera. Both lack the cross-reactivity problems associated with their mammalian equivalents, yet retain the positive aspects of being molecularly diverse in order to block surfaces with mixed characteristics (hydrophobic, hydrophilic, and covalent functional groups).

Miscellaneous Blockers
As assays become more sensitive and surfaces become more diverse, there is a need for alternative blocking reagents that perform a variety of functions beyond reducing non-specific background. Examples of alternative blockers include polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP). These blocking reagents are known for their ability to coat hydrophobic surfaces and render them both non-binding as well as hydrophilic. This hydrophilicity-producing characteristic has been exploited for assays designed as one-step on lateral flow matrices (i.e., over-the-counter pregnancy tests).

Matching the Blocker to the Surface
Passive Surfaces
Hydrophobic surfaces consist of those typically referred to as medium binding. These surfaces can be effectively blocked with either non-ionic detergents or protein blockers. In our experience, the combined use of 0.02% TWEEN® 20 and 1% BSA has been ideal for most assays on medium binding surfaces.

Surfaces that are comprised of hydrophobic and ionic binding sites are typically termed high binding. Due to the ability of IgG and its conjugates to displace detergents, high binding surfaces are slightly more difficult to block than medium binding surfaces. The combined use of a non-ionic detergent (0.02% TWEEN 20) and a protein blocker (1% BSA, 0.2% NFDM, 10% normal sera, etc.) is suggested to effectively minimize non-specific binding. The choice of protein blocker is more dependent on the assay’s reactive biomolecules than on the surface itself.

Surfaces that are highly charged and exhibit little to no hydrophobic characteristics must be blocked with a protein blocker. Since an ionic surface is typically only used for the immobilization of small, ionic molecules, the chosen blocker must be both relatively small to prevent the eclipsing of the specific capture molecule and express the appropriate ionic species in order to interact with the surface charge. BSA (1% to 3%) or non-fat dry milk (0.2% to 2%) can be used for most assays; however, a smaller molecule such as ethanolamine (10%) may be necessary when very small biomolecules are specifically bound. Non-ionic detergents are useless in terms of blocking an ionic surface.

Covalent Surfaces
See the Corning Surface Selection Guide (CLS-C-DL-AC-010) at www.corning.com/lifesciences for additional information on ELISA plates with covalent surfaces.

Amine surfaces used with bifunctional crosslinkers must be blocked with a protein blocker capable of interacting with unreacted hydrophobic sites, ionic sites and covalent sites. We suggest using non-fat dry milk (0.2% to 2%) if possible. Another option is to use 10% normal serum as a primary blocking reagent or as a constituent of the post-coating assay buffer(s). Non-ionic detergents are inefficient as blockers for this surface, but including TWEEN 20 in the wash buffer can enhance the removal of non-bound, physically trapped biomolecules.

Pre-activated covalent surfaces (N-oxysuccinimide, Maleimide, Hydrazide, Universal) most always consist of hydrophobic and covalent regions. Amphipathic proteins tend to be the most efficient blockers of covalent surfaces. Non-ionic detergents will not block covalent interactions, but their presence in wash buffers is recommended regardless of the surface used. The following is a recommended method for blocking the four pre-activated covalent surfaces listed above:

1. After covalently immobilizing a specific biomolecule to the surface, block the plate with 2% BSA for approximately 30 minutes. The BSA diluent should be compatible with the surface and pH adjusted to allow the covalent interaction between the blocker and the surface to occur. If a protein blocker other than BSA is used, it must possess an appropriate functional group that can interact with the covalent sites on the surface.

2. Due to the complexity of the surface chemistry, the addition of 10% normal sera (such as fetal bovine, goat, fish, or chicken sera) to all reactant diluents is recommended and necessary for most assays. Normal sera have the molecular diversity necessary to block non-specific binding due to hydrophobic, ionic, and covalent interactions.
Conclusion

In summary, the selection of an appropriate blocking system is essential to the development of a specific and sensitive assay. Most often the choice is based on convenience, literature, and “what has traditionally worked.” In reality, empirical testing is required to both choose the best blocker(s) and optimize the blocking procedure. This testing is heavily influenced by the surface chemistry as well as interactions unique to the specific assay reactants, primarily cross-reactivity. A blocker can totally inhibit non-specific reactions with the surface and not reduce signal-to-noise due to cross-reactivity issues.

It is advisable that during the development of a blocking procedure, each of the proposed blockers and blocking conditions (buffers, incubation times, etc.) be evaluated for cross-reactivity with all other assay reactants. The ideal blocker and blocking procedure will effectively and reproducibly eliminate non-specific surface attachment and improve assay sensitivity and specificity – resulting in a high signal/low noise assay.

References