# **Stem Cell Therapy** Production

## Seeding, Expanding, and Harvesting Stem Cells

### Key considerations for working with MSCs, iPSCs, and NSCs through different stages of the workflow

## Mesenchymal Stem Cells (MSCs)

#### **Growth as Individual Cells Vessel selection**

- Traditional: Dishes, plates, T-flasks
- Stacked vessels: Corning CellSTACK, and HYPERStack vessels
- Bioreactor: Corning Ascent Fixed Bed Reactor (FBR), microcarriers in bioreactor

#### Growth surface selection

- Surface treatment
  - TC-treated
  - Corning CellBIND
- Surface coating (pre-coated or self-coated)
  - Collagen
  - Fibronectin
  - Corning Synthemax II

#### **Seeding Density** 200-12,000 cells/cm<sup>2</sup> (most commonly 1,000-6,000 cells/cm<sup>2</sup>)

#### Lower seeding density

- Increased proliferation potential/fold-expansion
- Fewer passages to reach target yield

#### Higher seeding density

- Reduced time to reach target cell density
- Economical for low output
- Increased stress to cells due to paracrine signaling, leading to stress fibers

**Doubling Time** 24-40 hours

**Passaging Time** 3-7 days

**Target Confluency** 75-80%

**Media Change** Every 2-3 days





Culture options and neural differentiation paths

## Induced Pluripotent Stem Cells (iPSCs)

#### **Growth as Clusters**

Substrate on dishes, plates, T-flasks, or CellSTACK vessels

Mouse embryonic fibroblasts (MEFs)

- Irradiated animal cells - Safety concerns

#### **Corning Matrigel matrix**

- From mouse sarcoma cells
- Not fully defined

#### **Corning Synthemax II vitronectin** substrate

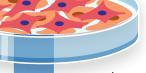
- Synthetic
- Xeno-free

**Seeding Density** 10,000-20,000 cells/cm<sup>2</sup>

#### **Doubling Time** 16-20 hours

**Passaging Time** 4-5 days

#### **Passaging Criteria**


60-75% confluency and/or medium-to-large colony size and/or signs of spontaneous differentiation

#### Microscopic observation daily for

- iPSC-like morphology
- Differentiated cells







2D Coculture with stromal cells

#### Corning rLaminin-521 (human)

- Recombinant human Laminin protein

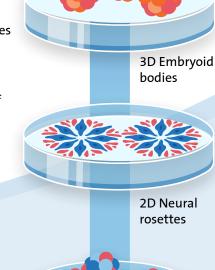
#### **Growth as Individual Cells**

**Recommend with Ascent FBR** or microcarriers and bioreactor



- Confluency

#### Accutase cell detachment solution


- Gentle, enzyme-free dissociation preserves genomic stability

#### **Corning CellStripper solution**

- Non-enzymatic cell dissociation solution formulated with a proprietary mixture of chelators

Manual passaging with pipet tip or cell scraper

Media change Daily

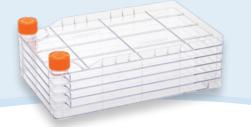


## Neural Stem Cells (NSCs)

#### Growth at High Density

Growth surface to promote attachment on dishes, plates, T-flasks, or CellSTACK vessels

- TC-treated
- CellBIND


#### Add positive charge

- Poly-L-Ornithine
- Poly-L-Lysine
- Poly-D-Lysine
- Corning PureCoat Amine
- Add Extracellular Matrix (ECM)
- Laminin

**Seeding Density** 20,000-100,000 cells/cm<sup>2</sup>

**Doubling Time** 20-48 hours (very limited before differentiation)

**Confluency at Passaging** 95-100%



Neurospheres

3D

3D Brain organoids

Learn more about the most important considerations for working with different stem cell types — MSCs, iPSCs and NSCs — through different stages of the workflow.

## www.corning.com/celltherapy

## CORNING

Warranty/Disclaimer: Unless otherwise specified, all products are for research use or general laboratory use only. Not intended for use in diagnostic or therapeutic procedures. Not for use in humans. For a listing of US medical devices, regulatory classifications or specific information on claims, visit www.corning.com/resources.

Corning, Accutase, Ascent, CellBIND, CellStack, CellStripper, HYPERStack, Matrigel, PureCoat, and Synthemax are trademarks of Corning Incorporated. For a listing of trademarks, visit www.corning.com/clstrademarks. All other trademarks are the property of their respective owners. ©2023 Corning Incorporated. All rights reserved. 9/23 CLS-AN-763