Human Airway Epithelial Cell Culture and COVID-19 Research

Application Note

Roxana Ghadessy, Ph.D.
Technical Marketing Manager, Asia Pacific
Corning Incorporated, Life Sciences

Human Airway Epithelial Cells and the Respiratory Tract

 Human airway epithelial (HAE) cells are commonly used models for studying respiratory tract biology, disease, and therapy ${ }^{1}$. Airway epithelial cells include tracheal, bronchial, small airway, and alveolar cells. These can be cultured as primary cells isolated from lung tissue e.g., primary HAE cells, differentiated pluripotent stem cells, or as immortalized or tumor cell lines such as Calu-3, a well-characterized human lung cancer cell line commonly used in models of human respiratory function, structure, and inflammatory responses ${ }^{1,2}$.In addition to its central air conducting role, the airway epithelium acts as a frontline defense against inhaled pathogens, including respiratory viruses ${ }^{3}$. Mechanisms of defense include the formation of a complex physicochemical cellular barrier, efficient maintenance of mucociliary clearance by differentiated luminal cells (secretory goblet and ciliated cells), and through immunological functions ${ }^{3}$. Therefore, human airway cell cultures which can be efficiently infected can also be used to model various mechanisms of viral pathogenesis during infection and human disease.

3D Cell Culture of Human Airway Epithelial Cells

HAE cells are traditionally cultured as 2D submerged cultures on plastic typically coated with extracellular matrix proteins such as collagens ${ }^{1}$ (Figure 1). Such submerged conditions can however result in the loss of the differentiated luminal cells with cells mainly demonstrating a basal cell phenotype ${ }^{1}$.

Various 3D cell culture systems have since been developed including air-liquid interface (ALI) and organoid cultures to study the airway epithelium. Based on a dual compartment model separated by a microporous membrane, permeable support systems are an established technique for ALI culture. Organoids are a newer technology which are gaining popularity in the study of lung epithelial cell function ${ }^{4}$. These are 3D structures that originate from stem/progenitor cells typically embedded in hydrogel (e.g., Corning ${ }^{\circledR}$ Matrigel ${ }^{\oplus}$ matrix) culture, which self-organize into airway-like tissue structures ${ }^{1}$. Both ALI and organoid models provide greater physiological relevance versus conventional cell culture to further elucidate mechanisms of viral pathogenesis in the in vivo airway.

Air-Liquid Interface (ALI) Culture and Coronavirus Research

Tracheobronchial cells are one of the first targets of human respiratory viruses such as coronaviruses ${ }^{5}$. These cells can be cultured in ALI on permeable supports for 21 to 28 days where the apical side of the cell layer is exposed to air while the basolateral side is submerged in medium ${ }^{5}$. The cells differentiate and form a pseudostratified epithelial layer containing many different functional cell types such as basal, ciliated, and mucussecreting goblet cells ${ }^{5}$. This 3D-like system effectively models the architecture and cellular complexity of the human upper conducting airway ${ }^{6}$. Another advantage of using permeable supports is the ability to generate multiple ALI cultures in an automation-friendly format for throughput cell-based assays of both healthy and diseased airway epithelium ${ }^{7}$ (Figure 2).

Key benefits of primary human airway epithelial ALI culture in modeling virus pathogenesis are the efficiency of infection by human and animal-transmitted coronaviruses (e.g., SARS- and MERS-CoV), the comparability of gene expression patterns and architectural functionality to the in vivo epithelium, and the ability to study virus infection, replication and host interactions in natural target cells ${ }^{5}$. Primary bronchial ALI cultures have been successfully used to study most human coronaviruses, a subset of which (e.g., MERS-CoV, SARS-CoV, HCoV-HKU1), having also been investigated with established primary alveolar ALI cultures (as reviewed in Reference 5).
The emerging literature on SARS-CoV-2 infection is primarily based on ALI cultures of primary bronchial cells inoculated with the virus to study infectious particle isolation, propagation, cytopathic effects, and anti-viral drug efficacy using a variety of techniques e.g., plaque assays, light microscopy, transmission electron microscopy, RT-PCR, and genome sequencing and analysis (Table 1). SARS-CoV-2 effectively infects and replicates in human airway epithelial ALI culture and has been shown to be directionally released on the apical side of the cell layer ${ }^{8}$. Furthermore, treatment with type I and III interferons significantly decreased virus replication in these ALI cultures demonstrating the therapeutic potential of IFNs to treat COVID-19. A more recent study examines viral tropism along the human respiratory tract with higher levels of SARS-CoV-2 infectivity evident in proximal (high) versus distal (low) pulmonary epithelial ALI cultures ${ }^{9}$. While establishing human airway ALI cultures may be perceived as labor intensive, they are a valuable research tool for analysis of human respiratory pathogens such as SARS-CoV-2 ${ }^{10}$.

Human Airway Organoids (AOs) and Coronavirus Research

Several approaches have been explored to generate mammalian airway organoids (AOs) as reviewed in Barkauskas, et al ${ }^{4}$. AOs have been derived from a variety of origin cell types including trachea or large airway basal cells ${ }^{4}$, alveolar cells ${ }^{11}$, human iPSC ${ }^{12}$, and embryonic lung ${ }^{13}$. AOs have the same ability to differentiate into polarized structures consisting of ciliated, goblet, and basal cells without the need for a permeable support system ${ }^{14}$.
Recent advances enabling long-term (i.e., >1 year) expansion of human AOs from biopsies or bronchoalveolar lavage fluid has improved the reproducibility and ease of availability of these organoid models ${ }^{15}$. Once established, differentiated AOs can be expanded indefinitely, display phenotypic and genotype stability, are amenable to modification by lentivirus and CRISPR technology and are therefore ideal tools for disease modeling ${ }^{15,16}$. AOs have allowed analysis of cystic fibrosis ${ }^{15}$ and rapid assessment of the infectivity of emerging respiratory viruses e.g., influenza, in humans ${ }^{17}$. An essential aspect of studying respiratory disorders is comparing gene expression of healthy versus diseased tissue for disease model characterization and screening. High throughput gene expression analysis of AOs using the nCounter ${ }^{\circledR}$ PlexSet $^{\text {M }}$ assay has been performed for healthy and asthmatic primary bronchial cells ${ }^{18}$ (Figure 3).

Organoids are suitable as new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues ${ }^{19,20}$. COVID-19 patients typically present with respiratory symptoms however, almost 25% of patients also exhibit gastrointestinal indications ${ }^{20}$ and liver damage is likewise a common feature in severe COVID-19 patients ${ }^{21}$. In emerging COVID-19 literature, lung ${ }^{22}$, small intestinal ${ }^{23,24}$, colonic ${ }^{20,25}$, brain ${ }^{26}$, and liver ducta ${ }^{21}$ organoids have been derived from primary or stem cells. This has facilitated the isolation and propagation of SARS-CoV-2 virus for downstream PCR, genome sequencing, in vivo transplantation and high throughput screening analysis (Table 1). An hPSC-derived lung organoid platform containing alveolar type II cells expressing ACE2 has been described which demonstrates SARS-CoV-2 infectivity, a robust physiological immunomodulatory response and amenability to high throughput anti-viral drug screening ${ }^{22}$. Lamers, et al. report that organoid-derived human airway epithelium cultured on a Collagen I-coated Transwell ${ }^{\oplus}$ permeable support (Corning) are productively infected by SARS-CoV and SARS-CoV-2 viruses which specifically target ciliated cells ${ }^{23}$. The data generated thus far strongly support that human organoids are effective in vitro models to study the systemic biology, pathogenesis, and potential treatment of coronaviruses ${ }^{23}$. The continued development of the human airway organoid model, in particular, will be of valuable importance to further study SARS-CoV-2 infectivity, replication kinetics, host-virus interactions, and immunomodulatory responses, and as a tool for antiviral drug discovery and development to help fight the current pandemic ${ }^{27}$.

Figure 1. Various culture systems used for culture of airway epithelial cells. Cells can be grown as a simple submerged culture on plastic typically coated with extracellular matrix (ECM)-derived proteins, at air-liquid interface (ALI) using a permeable support system, or in 3D organoid culture within a biological matrix. Image adapted from Reference 1.

Figure 2. Human bronchial/tracheal epithelial cells from a healthy donor (NHBE; Lonza CC-2541) and from a donor with cystic fibrosis (D-HBE-CF; Lonza 00196979) cultured at the ALI form pseudostratified epithelia containing 3 different cell types ${ }^{7}$.

Figure 3. Normal (left) versus asthmatic (right) airway organoids cultured in Corning Matrigel matrix. Multi-color fluorescent labels indicate specific cells types: basal cells (green), ciliated cells (red), mucus production from goblet cells (orange), nuclei (blue) ${ }^{18}$.

Table 1. Emerging Articles Using 3D Cell Culture Models to Study COVID-19

Application	3D Model	Culture System	Reference No.
Modeling of SARS-CoV-2 infection, replication, cytokine response profiling and sensitivity to interferons	ALI culture of human airway epithelial cells	Transwell® permeable supports	8
Exploration of SARS-CoV-2 infection susceptibility in nasal, airway and alveolar regions	ALI culture of primary human nasal epithelial (HNE), bronchial large epithelial (LAE), and type II alveolar cells	Transwell permeable supports	9

References

1. Hiemstra TD, et al. Airway and Alveolar Epithelial Cells in Culture. European Respiratory Journal 54:1900742, 2019. doi: 10.1183/13993003.00742-2019
2. Zhu Y, et al. Cultured Human Airway Epithelial Cells (Calu-3): A Model of Human Respiratory Function, Structure, and Inflammatory Responses. Critical Care Research and Practice Volume 2010, Article ID 394578, 8 pages. doi: 10.1155/2010/394578
3. Vareille M, et al. The Airway Epithelium: Soldier in the Fight Against Respiratory Viruses. Clin Microbiol Rev 24(1):210-29, 2011. doi: 10.1128/CMR.00014-10
4. Barkauskas CE, et al. Lung Organoids: Current Uses and Future Promise. Development 144: 986-997, 2017. doi: 10.1242/dev. 140103
5. Jonsdottir HR and Dijkman R. Coronaviruses and the Human Airway: A Universal System for Virus-host Interaction Studies. Virol J 13:24, 2016. doi: 10.1186/s12985-016-0479-5
6. de Jong PM, et al. Ciliogenesis in Human Bronchial Epithelial Cells Cultured at the Air-Liquid Interface. Am J Respir Cell Mol Biol 10:271-7, 1994.
7. Development of an Air-Liquid Interface Model using Primary Human Bronchial Epithelial Cells and HTS Transwell®-24 Permeable Supports from Corning (Corning Lit. Code CLS-AN-527).
8. Vanderheiden A, et al. Type I and Type III IFN Restrict SARS-CoV-2 Infection of Human Airway Epithelial 2 Cultures. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.105437.
9. Hou YZ, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020. doi: https://doi. org/10.1016/j.cell.2020.05.042.
10. Zhu N, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382:727-733, 2020.
11. Barkauskas CE, et al. Type 2 Alveolar Cells are Stem Cells in Adult Lung. J Clin Invest 123, 3025-3036, 2013. doi: 10.1172/JCI68782
12. Wong AP, et al. Directed Differentiation of Human Pluripotent Stem Cells into Mature Airway Epithelia Expressing Functional CFTR Protein. Nat Biotechnol 30, 876-882, 2012. doi: 10.1038/nbt. 2328
13. Nikolic MJ, et al. Human Embryonic Lung Epithelial Tips are Multipotent Progenitors that can be Expanded in vitro as Long-term Self-renewing Organoids. eLife:6:e26575, 2017. doi: 10.7554/eLife. 26575
14. Danahay H, et al. Notch2 is Required for Inflammatory Cytokine-driven Goblet Cell Metaplasia in the Lung. Cell Rep 10(2):239-252, 2015. doi: 10.1016/j.celrep.2014.12.017
15. Sachs N, et al. Long-term Expanding Human Airway Organoids for Disease Modeling. EMBO 15;38(4):e100300, 2019. doi: 10.15252/ embj. 2018100300
16. Li Y, et al. Organoids as a Powerful Model for Respiratory Diseases. Stem Cells International Volume 2020, Article ID 5847876. 8 pages. doi: 10.1155/2020/5847876
17. Zhou J, et al. Differentiated Human Airway Organoids to Assess Infectivity of Emerging Influenza Virus. PNAS 115 (26):6822-6827, 2018.
18. High Throughput Gene Expression Analysis of 3D Airway Organoids. Corning Life Sciences Application Note (Corning Lit. Code CLS-AN-534).
19. Clevers H. COVID-19: organoids go viral. Nat Rev Mol Cell Biol (2020). https://doi.org/10.1038/s41580-020-0258-4
20. Duan X, et al. Identification of Drugs Blocking SARS-CoV-2 Infection using Human Pluripotent Stem Cell-derived Colonic Organoids. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073320
21. Zhao B, et al. Recapitulation of SARS-CoV-2 Infection and Cholangiocyte Damage with Human Liver Ductal Organoids. Protein Cell 17: 1-5, 2020. doi: 10.1007/s13238-020-00718-6
22. Han Y , et al. Identification of Candidate COVID-19 Therapeutics using hPSC-derived Lung Organoids. bioRxiv preprint doi: https://doi. org/10.1101/2020.05.05.079095
23. Lamers $M M$, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 01 May 2020. doi: 10.1126/science.abc1669
24. Zhou J, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 2020. https://doi.org/10.1038/s41591-020-0912-6
25. Stanifer ML, et al. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection, Replication and Spread in Primary Human Intestinal Epithelial Cells. bioRxiv preprint doi: https://doi. org/10.1101/2020.04.24.059667
26. Ramani A, et al. SARS-CoV-2 targets cortical neurons of 3D human brain organoids and shows neurodegeneration-like effects. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.106575
27. Elbadawi M and Efferth T. Organoids of human airways to study infectivity and cytopathy of SARS-CoV-2. Lancet Respir Med 2020. S2213-2600(20)30238-1. https://doi.org/10.1016/
28. Sheahan TP, et al. An Orally Bioavailable Broad-spectrum Antiviral Inhibits SARS-CoV-2 in Human Airway Epithelial Cell Cultures and Multiple Coronaviruses in Mice. Sci Transl Med 12(541):eabb5883. 2020. doi: 10.1126/scitranslmed.abb5883

For more specific information on claims, visit the Certificates page at www.corning.com/lifesciences.
Warranty/Disclaimer: Unless otherwise specified, all products are for research use only. Not intended for use in diagnostic or therapeutic procedures. Not for use in humans. Corning Life Sciences makes no claims regarding the performance of these products for clinical or diagnostic applications.

For additional product or technical information, visit www.corning.com/lifesciences or call 800.492.1110. Outside the United States, call +1.978 .442 .2200 or contact your local Corning sales office.

CORNING

Corning Incorporated
Life Sciences
836 North St.
Building 300, Suite 3401
Tewksbury, MA 01876
t 800.492.1110
t 978.442 .2200
f 978.442.2476
www.corning.com/lifesciences

ASIA/PACIFIC
Australia/New Zealand t 61427286832
Chinese Mainland
t 862133384338
f 862133384300
India
t $911244604000 \quad$ t 65 6572-9740
f 911244604099 f65 6735-2913
Taiwan
t 886 2-2716-0338
f 886 2-2516-7500
EUROPE
CSEurope@corning.com
France
t 0800916882
f 0800918636
Germany
t 08001011153
f 08001012427
The Netherlands
t 0206557928
f 0206597673
United Kingdom
t 08003768660
f 08002791117

All Other European
 Countries
 t +31 (0) 206596051
 f+31 (0) 206597673
 LATIN AMERICA
 grupoLA@corning.com
 Brazil
 t 55 (11) 3089-7400
 Mexico
 t (52-81) 8158-8400

