A Novel Three-Dimensional Glioma Blood Brain Barrier Model for High Throughput Testing of Tumoricidal Capability

Hilary Sherman and Ann Rossi, P.h.D Corning Incorporated, Life Sciences, Kennebunk, ME 04043

ABSTRACT

Brain cancer is one of the most difficult cancers to treat due to the brain's own defense system known as the blood brain barrier (BBB). The blood brain barrier, which is meant to protect the brain from potential toxins, often prevents conventional chemotherapeutics from reaching brain tumors¹. Traditionally, high throughput testing of compound permeability through the BBB *in vitro* has been limited to assay of radio- or fluorophore-labeled compounds as they pass a cell monolayer growing on a permeable support system. Unfortunately, the labels themselves may impact the assay, and the ability to determine resulting tumor cytotoxicity must be studied independently. Here, we demonstrate a three dimensional (3D) model to study BBB transport as well as the resulting brain tumor cytotoxicity, by combining two commercially available products: Corning[®] 96 well spheroid microplates and the Corning HTS Transwell[®]-96 Tissue Culture System. Corning spheroid microplates are cell culture microplates with round wellbottom geometry coated with Corning Ultra-Low Attachment surface, enabling the formation of single multi-cellular tumor spheroids centered in each well in a highly reproducible manner. Corning HTS Transwells are permeable support systems commonly used for drug transport and migration/invasion studies. By replacing the standard flat-bottom Transwell receiver plate with a Corning spheroid microplate, we achieve the ability to study drug transport across the BBB and the resulting 3D glioma spheroid toxicity in an easy-touse, 3D, high-throughput assay.

METHODS/MATERIALS

Blood brain barrier model

MDCKII/MDR1 cells were attained from Dr. Piet Borst (Netherlands Cancer Institute, Amsterdam, the Netherlands) and seeded into HTS 96-well Transwells (Corning Cat. No. 3391 or 3977) at 100,000 cells per cm² in 100 µL of Dulbecco's Modification of Eagle's Medium (DMEM) (Corning Cat. No. 10-013-CM) supplemented with 10% fetal bovine serum (FBS) (Corning Cat. No. 35-010-CV). They were cultured for 5 days with a medium exchange 24 hours prior to assay. Monolayer integrity was assessed via lucifer yellow permeability (Sigma Cat. No. L0144) and rhodamine 123 P-glycoprotein (Pgp) efflux (Sigma Cat. No. R8004). Immunostaining of MDCKII/MDR1 monolayers was performed in order to confirm presence of tight junction proteins ZO1 (Thermo Fisher Cat. No. 339188) and occludin (Thermo Fisher Cat. No. 331588) per manufacturer's protocol.

Gliomasphere formation

LN229 cells (ATCC[®] Cat. No. CRL-2611[™]) were routinely cultured in DMEM containing 10% FBS. Cells were harvested with Accutase[®] cell detachment solution (Corning Cat. No. 25-058-CI) and seeded into 96 well spheroid microplates at 1,000 cells per well for 24 hours prior to assay.

Blood brain barrier/gliomasohere model test

After 5 days of BBB formation medium from Transwells was aspirated and medium in the apical chamber was replaced with 250 µM cisplatin, piperlongumine or buffer which was matched to contain DMSO for piperlongumine. Inserts were then combined with 24 hour-old LN229 spheroids for 2 hours at 37°C. After 2 hours of coincubation inserts were removed and tested for barrier integrity via lucifer yellow. LN229 spheroids were cultured for two days and then assessed for viability with CellTiter GLO[®] 3D (Promega Cat. No. G9683).

Blood brain barrier/gliomasohere screen

After 5 days of BBB formation medium from Transwells was aspirated and medium in the apical chamber was replaced with 50 µL of compound from the Tocriscreen Kinase Inhibitor Toolbox (Tocris Cat. No 3514) or buffer. Inserts were then combined with 24 hour-old LN229 spheroids for 2 hours at 37°C. After 2 hours of coincubation, inserts were removed, tested for barrier integrity and LN229 spheroids were cultured and assayed as described previously.

Assay Schematic

Day 0: Seed MDCKII/MDR1 into 96 HTS Transwells

Day 4: Seed LN229 cells into Spheroid microplate

Day 5: Combine Transwell and Spheroid microplate and expose to drugs for 2 hours. After drug incubation remove Transwell and test for monolayer integrity. Culture spheroids for 2 additional days.

Day 7: Assay spheroids with Cell Titer Glow 3D

Expression of tight junction proteins. Representative photomicrographs of MDCK/IIMDR1 monolayers on HTS 96-well Transwells stained with ZO-1(left) and Occludin right) (green) and counterstained with Hoechst to show nuclei (blue). Isotype control image not shown (Thermo MA5-18167). Images taken at 40X with Thermo Scientific CX7. Scale is 100 µm.

LN229 Viability

LN229 Cytotoxicity with or without blood brain barrier surrogate Percent viability of LN229 spheroids 48 hours post 2 hour 250 µM drug exposure through Transwells with or without a BBB. Viability was assessed by normalizing buffer controls to 100% viability. Data shown as the average of 3 independent studies, N = 30 with 1-way ANOVA with Bonferroni's post test. *** = p < 0.0001

Representative Drug Screen

Representative Screen

Representative screen from Tocriscreen Kinase Inhibitor Toolbox showing hits found with and without HTS 96-well Transwells containing MDCKII/MDR1 BBB. The pink line is average buffer response and the green line represents 3 sigma below buffer response.

Summary of Hits

Screen Summary

Compilation of hits discovered with or without HTS 96-well Transwells containing MDCKII/MDR1 BBB. Inserts that exhibited higher than 10 nm/sec lucifer yellow permeability after compound exposure were discarded from analysis since monolayer was deemed compromised. Hits were considered if they were 3 sigma below buffer response in at least 2 of 3 independent screens. Blue boxes are hits only found without BBB. Purple boxes were hits found with and without BBB. Blue boxes were only found when BBB was not present.

SUMMARY/CONCLUSIONS

- Corning 96-well spheroid microplates allow for the formation of consistent sized, single spheroids in each well that are ideally suited for drug screens.
- MDCKII/MDR1 cells can successfully form a barrier on Corning HTS 96-well Transwells and are capable of demonstrating low LY permeability, high Pgp efflux activity and tight junction formation.
- The combination of Corning spheroid microplates and the HTS 96-well Transwells allow for a novel 3D model that can differentiate between compounds that can pass the BBB and those that can not while also assessing the resulting gliomasphere cytotoxicity.

REFERENCES

- 1. Bhowmik, Arijit, Rajni Khan, and Mrinal Kanti Ghosh. "Blood brain barrier: a challenge for effectual therapy of brain tumors." BioMed Research International 2015 (2015).
- 2. Kim, Tae Hyong, et al. "Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells." Neuro-Oncology 16.10 (2014): 1354-1364.
- 3. Zhang, Lin, et al. "Influence of puerarin, paeoniflorin, and menthol on structure and barrier function of tight junctions in MDCK and MDCK-MDR1 Cells." Journal of Traditional Chinese Medical Sciences 2.2 (2015): 111-119.

Varranty/Disclaimer: Unless otherwise specified, all products are for research use only. Not intended for use in diagnostic or therapeutic procedures. Not for use in humans. Corning Life Sciences makes no claims regarding the performance of these products for clinical or diagnostic applications. For a listing of trademarks, visit us at www.corning.com/lifesciences/trademarks.

All other trademarks included in this document are the property of their respective owners. ©2018 Corning Incorporated. All rights reserved.

CORNING

	9	10	11	12
02 ride	1144 U0126	1213 PD 98059	1254 Y-27632 dihydrochloride	Buffer
74	1397 PP 1	1402 SB 203580 hydrochloride	1405 (-)-Terreic acid	Buffer
542	1616 SB 216763	1617 SB 415286	1777 Arctigenin	Buffer
756	2239 GW 583340 dihydrochloride	2272 Ro 08-2750	2275 TBB	Buffer
naleate	2475 ZM 323881 hydrochloride	2499 ZM 306416 hydrochloride	2539 IKK 16	Buffer
ıe	2611 IMD 0354	2639 CGK 733	2693 PHA 665752	Buffer
6	2908 EO 1428	2910 H 89 dihydrochloride	2926 FPA 124	Buffer
3	3271 Compound 401	3314 BI 78D3	3318 SC 514	Buffer